Thin Film PZT Acoustic Sensor for Fully Implantable Cochlear Implants

İlik, Bedirhan
Koyuncuoğlu, Aziz
Uluşan, Hasan
Chamanıan, Salar
Işık Akçakaya, Dilek
Şardan Sukas, Özlem
Külah, Haluk
This paper presents design and fabrication of a MEMS-based thin film piezoelectric transducer to be placed on an eardrum for fully-implantable cochlear implant (FICI) applications. Resonating at a specific frequency within the hearing band, the transducer senses eardrum vibration and generates the required voltage output for the stimulating circuitry. Moreover, high sensitivity of the sensor, 391.9 mV/Pa @900 Hz, decreases the required power for neural stimulation. The transducer provides highest voltage output in the literature (200 mVpp @100 dB SPL) to our knowledge. A multi-frequency piezoelectric sensor, covering the daily acoustic band, is designed based on the test results and validated through FEA. The implemented system provides mechanical filtering, and mimics the natural operation of the cochlea. Herewith, the proposed sensor overcomes the challenges in FICI operations and demonstrates proof-of-concept for next generation FICIs.
Citation Formats
B. İlik et al., “Thin Film PZT Acoustic Sensor for Fully Implantable Cochlear Implants,” 2017, vol. 1, Accessed: 00, 2020. [Online]. Available: