Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Nonlinear reduced order modeling of bolted joints
Download
index.pdf
Date
2019
Author
Karapıstık, Gökhan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
285
views
145
downloads
Cite This
Most of the structural systems assembled by using bolted joints. Therefore, bolted joint models have a critical importance to estimate the behavior of the overall assembled system. There are several linear bolted joint models, which consist of spring and dashpot elements in literature. While they can estimate the resonant frequency of the overall system with a sufficient accuracy, linear bolted joint models are inadequate for approximating the damping, which arises from the friction in the contact interface of assembled system. On the other hand, there are examples of nonlinear bolted joint models, which utilize 3D contact models to account for the frictional damping behavior in the literature. However, modeling the structures with many bolted joints by using high fidelity 3D contact models is very time consuming. Therefore, reduced order bolted joint models with sufficient accuracy are in need. In this thesis, a method for modeling bolted joints in frequency domain is introduced. The joint model consists of microslip friction elements each one of which is constructed by several dry friction elements in parallel and located at the contact interface.
Subject Keywords
Joints (Engineering).
,
Joint Model
,
Reduced Joint Model
,
Microslip Friction
,
Multiple Macroslip Elements
,
Nonlinear Vibrations.
URI
http://etd.lib.metu.edu.tr/upload/12624571/index.pdf
https://hdl.handle.net/11511/44657
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Reduced Order Modeling of Bolted Joints in Frequency Domain
Karapıstık, Gökhan; Ciğeroğlu, Ender (2019-01-31)
Most of the structural systems assembled by using bolted joints. Therefore, bolted joint models have a critical importance to estimate the behavior of the overall assembled system. There are several linear bolted joint models which consist of spring and dashpot elements in literature. While they can estimate the resonant frequency of the overall system with a sufficient accuracy, linear bolted joint models are inadequate for approximating the damping which arises from the friction in the contact interface o...
3D linear identification of mechanical joint using FRF decoupling and inverse structural modification methods
Soleimani, Hossein; Ciğeroğlu, Ender; Özgüven, Hasan Nevzat (2021-01-01)
Mechanical connections such as bolts and rivets are inevitable in most engineering structures and may significantly affect the dynamic behavior of the structures. Therefore, modeling a joint simply and accurately is essential for assembled structures. On the other hand, the most important step is the determination of these joint model parameters which will be used in the calculation of dynamic response of assembled structures. For this purpose, in this paper, FRF Decoupling Method (FRF-DM), proposed in an e...
Dynamic modeling of structural joints
Tol, Şerife; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2012)
Complex systems composed of many substructures include various structural joints connecting the substructures together. These mechanical connections play a significant role in predicting the dynamic characteristics of the assembled systems accurately. Therefore, equivalent dynamic models of joints that consist of stiffness and damping elements should be developed and the joint parameters should be determined for an accurate vibration analysis. Since it is difficult to estimate joint parameters accurately by...
Damage detection in structures using vibration measurements
Aydoğan, Mustafa Özgür; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2003)
Cracks often exist in structural members that are exposed to repeated loading, which will certainly lower the structural integrity. A crack on a structural member introduces a local flexibility which is a function of the crack depth and location. This may cause nonlinear dynamic response of the structure. In this thesis, a new method is suggested to detect and locate a crack in a structural component. The method is based on the fact that nonlinear response of a structure with a crack will be a function of t...
Quasi-static nonlinear seismic assessment of a fourth century A.D. Roman Aqueduct in Istanbul, Turkey
Gonen, Semih; Pulatsu, Bora; Erdogmus, Ece; Karaesmen, Engin; Karaesmen, Erhan (2021-01-01)
The majority of architectural heritage consists of load-bearing masonry components made up of stone units and relatively weak mortar joints, yielding potential weak planes for masonry structures where tension and shear failures are expected to occur. Advanced nonlinear analyses are required to simulate these phenomena and predict the corresponding nonlinear structural behavior of historic masonry constructions. In this context, this paper presents a model of a stone masonry Roman aqueduct (the Valens Aquedu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Karapıstık, “Nonlinear reduced order modeling of bolted joints,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.