Simulator of an additive and subtractive type of hybrid manufacturing system

Additive Manufacturing (AM) facilitates the production of intricate objects despite its weakness in attainable part quality and fabrication speed compared to the conventional manufacturing methods. To alleviate the problems arising as a natural outcome of AM methods, hybrid technologies become viable options by employing concurrent manufacturing procedures, e.g. synergetic additive and subtractive manufacturing (SM) actions. Hybrid workstations have recently opened up new dimensions to 3D-printing industry, but related research topics remain underexplored in the literature. In this study, a hybrid manufacturing simulator that imitates AM and SM operations is presented. The hybrid simulator reported aims to provide users with a comprehensive interpretation of the G-codes, thereby previews the AM/SM tool paths and the eventual shape of the fabricated object. Consequently, the simulator lets users realize the final form of the artifacts besides enabling them to notice possible problems on the manufacturing trajectories. In addition, a post-processor customized for multi-axis hybrid platforms is built for the generation of G-code files. As a significant feature of the proposed manufacturing simulator, the capability to handle variable bead-width on the additive infill path has also been addressed in the study.


Optimization of the mechanical properties of Ti-6Al-4V alloy produced by three dimensional additive manufacturing using termochemical processes
Bilgin, Güney Mert; Durucan, Caner; Esen, Ziya; Department of Metallurgical and Materials Engineering (2017)
Selective laser melting (SLM) is an additive manufacturing (AM) technology used for aerospace and biomedical Ti-6Al-4V alloys to produce parts with complex geometry at one step with reduced production time, scrap and cost. However, parts produced by SLM are lack of ductility due to microstructures similar to those cast products and residual stresses generated during laser processing. In this study, Ti6Al-4V alloys produced by SLM were treated by thermo-hydrogen process (THP) to increase ductility and to ref...
Development of a web-based manufacturing application system for rotational parts
Özsüer, Erhan; Anlağan, Ömer; Department of Mechanical Engineering (2003)
Developing process plans and part programs rapidly and correctly for CNC machine tools plays a vital role in manufacturing. This study is concerned with the development of a web-enabled virtual design and manufacturing application system for rotational parts. The object oriented methodology is used in the application development. Windows Distributed interNet Application (DNA) architecture which describes a framework of building software technologies in an integrated web and client-server model of computing,...
Mechanical behavior of additively manufactured polymer composite structures and interfaces
Kepenekci, Mehmet; Özerinç, Sezer; Department of Mechanical Engineering (2021-9-6)
Additive manufacturing (AM) is a technology based on the layer-by-layer production of parts. Fused filament fabrication (FFF) is one of the most cost-effective and popular AM techniques for the production of polymeric structures. While the initial use of FFF was limited to thermoplastics such as PLA and ABS, recent advances enabled the printing of composite materials and structures for superior mechanical performance. Multi-material printing through dual-nozzle systems offers a unique opportunity towards t...
Mechanical characterization of additively manufactured Ti-6Al-4V aircraft structural components produced by electron beam melting
Yılmaz, Fatih; Şahin, Melin; Gürses, Ercan; Department of Aerospace Engineering (2022-8-25)
Weight reduction of structural parts is one of the most important efforts of design and analysis studies to improve fuel efficiency and flight performance of aerospace vehicles through topology optimization creating complex geometric designs that are lighter but cannot be produced via conventional manufacturing methods. Instead, the manufacturing of the resulting designs is possible with additive manufacturing methods where the final product is obtained by adding layer upon layer to obtain close to the near...
Mechanical properties comparison of strut-based and TPMS lattice structures produced by EBM
Sokollu, Barış; Konukseven, Erhan İlhan; Gülcan, Orhan; Department of Mechanical Engineering (2022-4-28)
Additive manufacturing is a relatively old but rapidly emerging innovative technology that enables various shapes and designs to be realized which are almost not possible with conventional manufacturing. Lattice structures are one of the most unique applications of utilizing additive manufacturing technology due to weight-to-strength ratios they offer, high impact absorption capabilities, and difficult to produce with conventional approaches. Studies in the literature are mainly focusing on the strut-based ...
Citation Formats
M. U. Dilberoğlu, U. Yaman, and M. Dölen, “Simulator of an additive and subtractive type of hybrid manufacturing system,” 2019, vol. 38, Accessed: 00, 2020. [Online]. Available: