Design of a low-costs warm robotic system for flocking

Download
2019
Demir, Çağrı Ata
Swarm robotics is an approach to the coordination of large numbers of robots. The main motivation of this thesis is to study a robotic system designed to do flocking both indoors and outdoors. A walking robot is designed parallel to this purpose. In the first part of thesis, a leg is designed to minimize the displacement of center of mass of robot in vertical axis to eliminate mechanical noise. Mechanism analysis and Matlab optimization tools are utilized in this process. Then, electronic components of robot are determined and mechanical design of robot, which is applicable to leg designed in previous stage and selected electronics, is done as first prototype in Solidworks platform. The controller of robot is written in Arduino platform. Parts are produced by using Ultimaker 2+ 3D printer and assembled afterwards. Assembled robot is run to test its obstacle avoidance and light detection skills.In the second part of thesis, the first prototype is improved and a smaller robot is designed mainly to decrease its production time. An encoder embedded motor is utilized in second prototype to implement different gaits. In second prototype, robot reaches to a size and mobility for flocking.

Suggestions

Control and motion planning for mobile robots via a secure wireless communication protocol
Kaya, Muhammed Çağrı; Eroğlu, Alperen; Temizer, Selim (null; 2013-05-21)
Mobile robot control is receiving considerably more attention in current robotics research. Especially unmanned vehicles are used in important missions such as bomb disposal, patrolling borders of a country by unmanned aerial vehicles (UAVs), etc. This usage increases the importance of unmanned vehicles and they become a target of malevolent people. In this study, a controllable robot system is designed with a secure communication protocol. A Pioneer P3-DX robot is used as a ground vehicle. The robot operat...
Swarm robotics: From sources of inspiration to domains of application
Şahin, Erol (2005-01-01)
Swarm robotics is a novel approach to the coordination of large numbers of relatively simple robots which takes its inspiration from social insects. This paper proposes a definition to this newly emerging approach by 1) describing the desirable properties of swarm robotic systems, as observed in the system-level functioning of social insects, 2) proposing a definition for the term swarm robotics, and putting forward a set of criteria that can be used to distinguish swarm robotics research from other multi-r...
Swarm robotics: From sources of inspiration to domains of application
Şahin, Erol (Springer Verlag; 2005-09-01)
Swarm robotics is a novel approach to the coordination of large numbers of relatively simple robots which takes its inspiration from social insects. This paper proposes a definition to this newly emerging approach by 1) describing the desirable properties of swarm robotic systems, as observed in the system-level functioning of social insects, 2) proposing a definition for the term swarm robotics, and putting forward a set of criteria that can be used to distinguish swarm robotics research from other multi-r...
DEVELOPMENT OF AN EXTENSIBLE HETEROGENEOUS SWARM ROBOT PLATFORM
Bilaloğlu, Cem; Turgut, Ali Emre; Şahin, Erol; Department of Mechanical Engineering (2022-1-13)
This thesis introduces Kobot -- an extensible heterogeneous swarm robot platform. Kobot platform uses a common hardware and software architecture based on off-the-shelf components, 3-D printing, and open-source software that evolves with state of the art. Robots built using this common architecture range from wheeled to flying robots and formed a heterogeneous swarm. The common architecture enabled developing and testing systems for the lightweight flying robots on resourceful ground robots. As a result, Ko...
PФSS: An Open-source Experimental Setup for Continuous Real-world Implementation of Swarm Robotic Systems
Turgut, Ali Emre; Krajnik, Tomas (2018-10-19)
Swarm robotics is a relatively new research field that employs multiple robots (tens, hundreds or even thousands) that collaborate on complex tasks. There are several issues which limit the real-world application of swarm robotic scenarios, e.g. autonomy time, communication methods, and cost of commercialised robots. We present a platform, which aims to overcome the aforementioned limitations while using off-the-shelf components and freely-available software. The platform combines (i) a versatile open-hardw...
Citation Formats
Ç. A. Demir, “Design of a low-costs warm robotic system for flocking,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.