Stochastic modeling of biochemical systems with filtering and smoothing

Download
2019
Haksever, Merve
Deterministic modeling approach is the traditional way of analyzing the dynamical behavior of a reaction network. However, this approach ignores the discrete and stochastic nature of biochemical processes. In this study, modeling approaches, stochastic simulation algorithms and their relationships to each other are investigated. Then, stochastic and deterministic modeling approaches are applied to biological systems, Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and JACK-STAT signaling pathway. Also, numerical solutions for ODE system and realizations obtained through stochastic simulation algorithms are compared. In general, it is not possible to assess all elements of the state vector of biochemical systems. Hence, some statistical models are used to obtain the best estimation. Filtering and smoothing distributions can be obtained via Bayes’ rule. However, as an alternative to approximate these distributions Monte Carlo methods might be used. In the second part, bootstrap particle filter algorithm is derived and applied to birthdeath process. Estimated probability distribution functions are compared according to number of particles used.

Suggestions

Efficient Surface Integral Equation Methods for the Analysis of Complex Metamaterial Structures
Yla-Oijala, Pasi; Ergül, Özgür Salih; Gurel, Levent; Taskinen, Matti (2009-03-27)
Two approaches, the multilevel fast multipole algorithm with sparse approximate inverse preconditioner and the surface equivalence principle algorithm, are applied to analyze complex three-dimensional metamaterial structures. The efficiency and performance of these methods are studied and discussed.
Stochastic modelling of biochemical networks and inference of modelparameters
Purutçuoğlu Gazi, Vilda (null, Springer, 2018-01-01)
There are many approaches to model the biochemical systems deterministically or stochastically. In deterministic approaches, we aim to describe the steady-state behaviours of the system, whereas, under stochastic models, we present the random nature of the system, for instance, during transcription or translation processes. Here, we represent the stochastic modelling approaches of biological networks and explain in details the inference of the model parameters within the Bayesian framework.
Neural network calibrated stochastic processes: forecasting financial assets
Giebel, Stefan; Rainer, Martin (Springer Science and Business Media LLC, 2013-03-01)
If a given dynamical process contains an inherently unpredictable component, it may be modeled as a stochastic process. Typical examples from financial markets are the dynamics of prices (e.g. prices of stocks or commodities) or fundamental rates (exchange rates etc.). The unknown future value of the corresponding stochastic process is usually estimated as the expected value under a suitable measure, which may be determined from distribution of past (historical) values. The predictive power of this estimati...
Frequency estimation of a single real-valued sinusoid: An invariant function approach
Candan, Çağatay; Çelebi, Utku (2021-08-01)
An invariant function approach for the computationally efficient (non-iterative and gridless) maximum likelihood (ML) estimation of unknown parameters is applied on the real-valued sinusoid frequency estimation problem. The main attraction point of the approach is its potential to yield a ML-like performance at a significantly reduced computational load with respect to conventional ML estimator that requires repeated evaluation of an objective function or numerical search routines. The numerical results ind...
Fixed-frequency slice computation of discrete Cohen's bilinear class of time-frequency representations
Ozgen, MT (2000-02-01)
This communication derives DFT-sample-based discrete formulas directly in the spectral-correlation domain for computing fixed-frequency slices of discrete Cohen's class members with reduced computational cost, both for one-dimensional and multidimensional (specifically two-dimensional (2-D)) finite-extent sequence cases. Frequency domain integral expressions that define discrete representations are discretized to obtain these discrete implementation formulas. 2-D ambiguity function domain kernels are chosen...
Citation Formats
M. Haksever, “Stochastic modeling of biochemical systems with filtering and smoothing,” Thesis (M.S.) -- Graduate School of Applied Mathematics. Scientific Computing., Middle East Technical University, 2019.