Development of MOST for Real-Time Tsunami Forecasting

2016-11-01
Titov, Vasily
Kanoğlu, Utku
Synolakis, Costas
The development, testing, and implementation of a real-time tsunami forecast model, the method of splitting tsunami (MOST), is described. MOST is now used as an operational forecast model for the National Oceanic and Atmospheric Administration's Tsunami Warning System, and as a tsunami hazard assessment tool in the United States and in many countries around the world. Every step in the development of MOST marked new scientific challenges, improvements of technological and computational capabilities, and new demands of the engineering and hazard mitigation communities for applied and benchmark modeling tools for tsunami hazard assessment.
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING

Suggestions

Development of a Tsunami Inundation Map in Detecting Tsunami Risk in Gulf of Fethiye, Turkey
Dilmen, Derya Itir; Kemeç, Serkan; Yalçıner, Ahmet Cevdet; Duzgun, Sebnem; Zaytsev, Andrey (2015-03-01)
NAMIDANCE tsunami simulation and visualization tool is used to create tsunami inundation maps showing quantitative maximum tsunami flow depths in Fethiye. The risk of an extreme, but likely earthquake-generated tsunami is estimated at Fethiye Bay for 14 probabilistic earthquake scenarios. The bay is located 36A degrees 39'5aEuro(3)N 29A degrees 7'23aEuro(3)E, southwestern Turkey, which has coastline to the eastern Mediterranean Sea. The tsunami simulation and inundation assessment are performed in three sta...
Assessment of overtopping reliability and benefits of a flood detention dam
Yanmaz, Ali Melih (Canadian Science Publishing, 2008-10-01)
There is a growing tendency to assess safety levels of existing dams and to design new dams using probabilistic approaches according to project characteristics and site-specific conditions. This study is a probabilistic assessment of the overtopping reliability of a dam, which will be designed for flood detention purpose, and will compute the benefits that can be gained as a result of the implementation of this dam. In a case study, a bivariate flood frequency analysis was carried out using a five-parameter...
Development of earthquake lossmap for Europe
Cagnan, Zehra; ŞEŞETYAN, KARİN; Zulfikar, Can; DEMİRCİOĞLU, MİNE BETÜL; Kariptas, Cagatay; Durukal, Eser; Erdik, Mustafa (Informa UK Limited, 2008-01-01)
For almost real-time estimation of the losses after a major earthquake in the Euro-Mediterranean region, the Joint Research Area-3 (JRA-3) component of the European Union (EU) Project "Network of Research Infrastructures for European Seismology -NERIES'' foresees (at several levels of sophistication):
The Auto-Tuned Land Data Assimilation System ( ATLAS)
Crow, W. T.; Yılmaz, Mustafa Tuğrul (American Geophysical Union (AGU), 2014-01-01)
Land data assimilation systems are commonly tasked with merging remotely sensed surface soil moisture retrievals with information derived from a soil water balance model driven by observed rainfall. The performance of such systems can be degraded by the incorrect specification of parameters describing modeling and observation errors. Here the Auto-Tuned Land Data Assimilation System (ATLAS) is introduced to simultaneously solve for all parameters required for the application of a simple land data assimilati...
Development and analytical verification of an inelastic reinforced concrete joint model
Unal, Mehmet; Burak Bakır, Burcu (Elsevier BV, 2013-07-01)
Previous experimental research indicated that beam-to-column connections of reinforced concrete (RC) moment resisting frame structures experience considerable deformations under earthquake loading and these deformations have a major contribution to the story drift of the building. In current analysis and design applications, however, the connection regions are generally modeled as rigid zones and the inelastic behavior of the joint is not considered. This assumption gives rise to an underestimation of the s...
Citation Formats
V. Titov, U. Kanoğlu, and C. Synolakis, “Development of MOST for Real-Time Tsunami Forecasting,” JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45046.