GAN-HEMT based KU-band RF power amplifier design for SATCOM applications

Download
2019
Polater, Ahmet Mert
As many of today’s wireless applications need, transmitters of satellite communication (SATCOM) applications require one of the vital circuits in microwave world; a unique RF power amplifier, the sub circuit which is located just before the antenna of the transmitter. RF power amplifiers are the circuits used to amplify the low-power RF signals to achieve adequately high-power signals for various applications. Different than the traditional Si transistor-technology based power amplifiers, the main aim of this dissertation is to study gallium nitride (GaN) high electron mobility transistor (HEMT) based Ku-band RF power amplifier design for SATCOM between a missile’s transmitter and a satellite’s receiver. The reason of common usage of GaN transistor technology in RF power amplifier design in the last ten years caused by the emerging need of more linear operation at higher frequencies; i.e. the frequencies used in SATCOM applications. Therefore, a GaN HEMT based RF power amplifier design with 1 Watt (30 dBm) output power working at 14 GHz center frequency has been studied and designed. All performance parameters are explained by simulation results and measurements. Firstly, the design, whose performance parameters have been verified with schematic and electromagnetic (EM) simulations, has been prototyped with printed circuit board (PCB) etching devices such as LPKF. The observations made after prototyping showed that the performance difference between simulation results and measurements caused by the manufacturing and assembly errors. As an example of such undesired errors, “poor grounding” of the main transistor can be given due to lack of filled vias under the transistor. For such high frequency applications, poor grounding can cause a great degradation on the gain. As a result, the observations have proved that the used transistor does not work properly even though the impedance matching appears as successful for this work. Therefore,it has been understood that more sensitive production method should be chosen. Secondly, a professional foundry is preferred for PCB manufacturing and seems that effects of the problems caused by the first method are eliminated or decreased remarkably. In addition, a “rework” process is conducted after manufacturing for fine tuning. Lastly, a comparison table of simulation results with two different manufacturing methods are also exhibited in this study.

Suggestions

X Band TX reject waveguide bandpass filter design for satellite communication systems
Çelebi, İrem; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2018)
For several applications such as satellite communication, filters are required since antenna systems are operating as both receiving and transmitting. There is a possibility of leakage from transmit to the receive path in these kind of systems which needs to be isolated in order to protect equipments after filter. Low loss, high isolation and bandpass characteristics are desired for the filtering, which can be validated with waveguide filters. In this study, bandpass waveguide filter design operating in X-Band f...
Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm
Ozgun, O; Mutlu, S; Aksun, MI; Alatan, Lale (2003-08-01)
Dual-frequency operation of antennas has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services operating at two different frequency bands, and services of PCS and IMT-2000 applications. Although there are various techniques to achieve dual-band operation from various types of microstrip antennas, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity-model based simulation tool alon...
Broadband phase shifter realization with surface micromachined lumped components
Tokgöz, Korkut Kaan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2012)
Phase Shifters are one of the most important building cells of the applications in microwave and millimeter-wave range, especially for communications and radar applications; to steer the main beam for electronic scanning. This thesis includes all of the stages starting from the theoretical design stage to the measurements of the phase shifters. In detail, all-pass network phase shifter configuration is used to achieve broadband and ultra wide-band differential phase characteristics. For these reasons, 1 to ...
Reliable real-time video communication in wireless sensor networks
Ayran, Orhan; Akan, Özgür Barış; Department of Electrical and Electronics Engineering (2007)
Many wireless sensor network (WSN) applications require efficient multimedia communication capabilities. However, the existing communication protocols in the literature mainly aim to achieve energy efficiency and reliability objectives and do not address the multimedia communication challenges in WSN. In this thesis, comprehensive performance evaluation of the existing transport protocols is performed and it has been shown that the existing proposals achieve very poor performance in terms of large set of me...
Broadband spatial power combining in coaxial medium
Tanç, Zafer; Demir, Şimşek; Department of Electrical and Electronics Engineering (2012)
Microwave amplifiers having high output power are the essential components in many systems, such as radar and satellite communication. Although the structures generated by tube technologies fulfill the necessity of the required output power, the use of these amplifiers includes some critical drawbacks, one of which is the limited life of operation. Alternatively, solid-state amplifiers produced by transistor technology are preferred since they are high reliable devices. In order to provide the necessary out...
Citation Formats
A. M. Polater, “GAN-HEMT based KU-band RF power amplifier design for SATCOM applications,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2019.