Studies on polylactide nanocomposites with polyhedral oligomeric silsesquioxane

Meyva Zeybek, Yelda.
The main purpose of the first part of this thesis was to investigate influences of three parameters on the mechanical and thermal properties of the polylactide (PLA) matrix nanocomposites filled with polyhedral oligomeric silsesquioxane (POSS) particles. For the first parameter of “Filler Content”, nanocomposites with 1, 3, 5, 7 wt% basic POSS structure were compared. For the second parameter of “Functional Group”, basic POSS structure having only nonpolar isobutyl groups were compared with three other functionalized POSS structures; i.e. aminopropylisobutyl-POSS (ap-POSS), propanediolisobutyl-POSS (pd-POSS) and octasilane-POSS (os-POSS). For the third parameter of “Copolymer Compatibilization”, all specimens were compared before and after their maleic anhydride (MA) grafted copolymer compatibilization. Specimens were produced with twin-screw extruder melt mixing and shaped under compression molding. Various tests and analyses indicated that the optimum filler content for the improved mechanical properties was 1 wt%; while the optimum structure for strength and modulus was pd-POSS structure, in terms of fracture toughness it was basic POSS structure. Additional use of MA compatibilization was especially effective for the basic POSS and os-POSS particles. Because of the biocompatible and nontoxic character of both PLA and POSS nanoparticles, recently being a significant alternative for biomedical parts; the main purpose of the second part of this thesis was to investigate performance of the 3D-printed PLA/POSS nanocomposites with respect to the compression molded PLA/POSS specimens. Due to the higher uniformity and higher homogeneity in the distribution of POSS nanoparticles in each PLA matrix layer, mechanical tests (tensile, flexural, toughness) revealed that the improvements in the strength, elastic modulus and fracture toughness values of the 3D-printed specimens were much higher compared to their compression molded counterparts, the benefits starting from 13% increasing up to 78%. It was also observed that there was almost no deterioration in the physical structure and mechanical properties of the 3D-printed specimens, even after keeping them 120 days at 37°C in a physiological solution prepared by using the standard PBS (Phosphate Buffered Saline) tablet. It is known that electrospinning is the most practical technique to obtain unique properties of polymer based nanofibrous structures, such as neat PLA and PLA filled with POSS particles. On the other hand, due to the so many different process parameters to consider, production of these fibers are extremely difficult and time consuming. That is, use of a certain statistical optimization technique in the design of experiments would be necessary. Therefore, the main purpose of the third part of this thesis was to determine the optimum electrospinning parameters by applying the Taguchi technique first to neat PLA and then to reveal the applicability of these parameters for the electrospinning of PLA/POSS nanofibers. It was observed that instead of conducting 81 experiments to determine the most significant 4 optimum process parameters for PLA, use of Taguchi L9 orthogonal array experiment matrix, i.e. conducting only 9 experiments, reduced time, labor and material consumption considerably. Moreover, it was generally concluded that these same parameters could be also used for the electrospinning of PLA/POSS nanofibers after addition of only 3 wt% KCl salt into the polymer solution.
Citation Formats
Y. Meyva Zeybek, “Studies on polylactide nanocomposites with polyhedral oligomeric silsesquioxane,” Thesis (Ph.D.) -- Graduate School of Natural and Applied Sciences. Polymer Science and Technology., Middle East Technical University, 2020.