Development of solar cells based on surface passivated lead telluride quantum dots and lead selenide nanorods; a comprehensive approach targeting the instability and surface mediated trap states

Download
2020
Hacıefendioğlu, Tuğba.
One of the underlying reasons for the 33% theoretical limit of solar cells (Shockley–Queisser limit) is the losses originating from non-absorbed ultra violet and infrared regions of the solar spectrum. PbTe Quantum Dots-(QDs) and PbSe Nanorods-(NRs) are two of the intriguing nanocrystals which can be utilized to overcome the efficiency limit due to unique properties such as band gap tunability, large exciton Bohr radius and highly absorbing nature in ultra-violet and infrared regions. However, air instability and limited knowledge on the surface properties hinder their utilization in the field of optoelectronics. In this respect, a detailed understanding on the instability of those nanocrystals was presented and combinatorial passivation protocols based on engineering of the surface during the growth phase and solid-state ligand exchange process were developed. Dual passivation approach controls shape, ligand exchange rate, packing direction and mid gap state formation by dictating the {111}/ {200} facet ratio and yield solar cells with outstanding stabilities. Optical properties, stability behavior and band energies depend mainly on the aspect ratio of the NRs which is tuned by reaction parameters such as injection temperature, concentration of oleic acid and diphenylphosphine. We also found that the ligand choice was the key factor in improving the solar cell performance as affecting the thin film morphology by controlling the NR packing. Optimization of the cell fabrication protocols yields PbSe NR based solar cells with 80% external quantum efficiency (EQE) and 2.60% power conversion efficiency (PCE) and enhanced stability up to 54 days under inert atmosphere for the first time in literature.

Suggestions

Simulation Studies of Hole Textured and Planar Microcrystalline Silicon Solar Cell at Different Zenith Angle
Zainab, Sana; Hussain, Shahzad; Altinoluk, Serra H.; Turan, Raşit (2017-09-23)
Efficiency of solar cell greatly depends on its interaction with input solar irradiance. For highly efficient solar cell, absorption of input light should be maximum at all angles. Different surface texturing techniques like pyramid texturing, cone texturing, pillar texturing have been used to increase absorption of light in solar cell. Micro-hole Surface texturing is getting popular in absorption of solar radiation at higher zenith angle. In this paper, effect of varying zenith angle on hole textured solar...
Investigation on the incorporation of quantum dot thin film layers in the organic and inorganic solar cell structures
Candan, İdris; Erçelebi, Ayşe Çiğdem; Parlak, Mehmet; Department of Physics (2016)
Thin films based photovoltaic solar cell technologies have the Shockley-Queisser limit for maximum efficiencies and these cells can only collect photon in the specific energy range due to their band gap. New approaches are needed to improve the power conversion efficiency (PCE) of photovoltaic devices. Quantum dots (QDs) thin film layer inside any device structure is particularly attractive candidates to increase the PCE of solar cells due to their size adjustable band gap values, multiple exciton generatio...
Application of Si Nanowires Fabricated by Metal-Assisted Etching to Crystalline Si Solar Cells
KULAKCI, Mustafa; ES, FIRAT; ÖZDEMİR, Baris; Ünalan, Hüsnü Emrah; Turan, Raşit (2013-01-01)
Reflection and transmission through a solar cell can be significantly reduced using light-trapping structures. This approach can be applied to both crystalline and thin-film solar cells to improve the light absorption and conversion efficiency of the cell. In this study, vertically aligned Si nanowires were fabricated over a large area via a metal-assisted etching technique. Following a detailed parametric study, nanowires were applied to industrial-size (156 mm x 156 mm) Si solar cells. The reflectivity fr...
A Feasibility study for external control on self-organized production of plasmonic enhancement interfaces for solar cells
Zolfaghari Borra, Mona; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
The present study is about the improvement of the energy conversion efficiency of solar cells in which plasmonic light-trapping approach has been investigated. In this study, metal nanoparticles are allowed to form in a self-organized fashion on both flat and textured full scale monocrystalline silicon solar cell. These metal nanoparticles with strong optical interaction cross-sections at localized plasmonic resonance energies, improve coupling of the incoming light into the active area of solar cells by wa...
New DPP and Selenophene based NIR Absorbing Polymers for Organic Solar Cell Applications
Günbaş, Emrullah Görkem; Toppare, Levent Kamil; Oklem, Gulce (2018-07-06)
The broad spectrum of sunlight which spans from 300 nm to 1200 nm cannot be effectively utilized in organic solar cells since most organic polymers have absorption between 300 ve 800 nm range. Recently coppolymers from diketopyrrolopyrrole (DPP) and simple donors such as thiophene and furan was shown to achieve absorption maxima around 800 nm. Here we shown that DPP coupled with selenophene pushes the absorption even futher and a polymer with absorption maxima at 830 nm (absorption onset 930 nm) could be at...
Citation Formats
T. Hacıefendioğlu, “Development of solar cells based on surface passivated lead telluride quantum dots and lead selenide nanorods; a comprehensive approach targeting the instability and surface mediated trap states,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Chemistry., Middle East Technical University, 2020.