Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact

NASSER, Hisham
Tauqeer, Tauseef
HUSSAIN, Shahzad
Ozkol, Engin
Turan, Raşit
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intrinsic a-Si:H/n-type cSi/intrinsic a-Si:H/n(+)-type a-Si:H for the first time using Silvaco technology computer-aided design simulator. To analyse the optical and electrical properties of the proposed solar cell, several technological parameters such as work function and thickness of MoOx contact layer, intrinsic a-Si:H band gap, interface recombination, series resistance, and temperature coefficient have been evaluated. It has been shown that higher work function of MoOx induces the formation of a favourable Schottky barrier height as well as an inversion at the front interface, stimulating least resistive path for holes. Utilising thinner MoOx layer implies reduced tunnelling of minority charge carriers, thus enabling the device to numerically attain 25.33% efficiency. With an optimised interface recombination velocity and reduced parasitic absorption, the proposed device exhibited higher V-oc of 752mV, J(sc) of 38.8mA/cm(2), fill-factor of 79.0%, and an efficiency of 25.6%, which can be termed as the harbinger for industrial production of next-generation efficient solar cell technology.


Physical Device Simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell (P-DASH) based on Hole-selective Molybdenum Oxide (MoOx) with Crystalline Silicon (cSi)
Mehmood, Haris; Nasser, Hisham; Ozkol, Engin; Tauqeer, Tauseef; Hussain, Shahzad; Turan, Raşit (2017-08-23)
Silicon heterostructure solar cell based on p-type amorphous silicon(aSi:H) poses fundamental performance limitations due to the narrower band gap of aSi: H and the presence of band gap defects states. Such p-type a-Si: H layer can be replaced by novel carrier-selective Transition Metal Oxide (TMO) films such as Molybdenum oxide(MoOx) that offers higher work function and reduced parasitic absorption and thus enhanced photovoltaic performance. In this work, Silvaco TCAD simulation of Partial Dopant-Free Asym...
Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer
Mehmood, Haris; Nasser, Hisham; Zaidi, Syed Muhammad Hassan; Tauqeer, Tauseef; Turan, Raşit (2022-01-01)
The dopant-related issues are amongst the major performance bottleneck in crystalline silicon solar cells that can be alleviated via implementation of dopant-free layers. This work presents the implementation of tungsten oxide (WOx) and titanium oxide (TiOx) as hole- and electron-selective films for heterostructure solar cell design whereby n-type Si wafer has been passivated with ultrathin silicon oxide (SiO2) layer. Several designs have been investigated including passivated hydrogenated amorphous silicon...
Development of hole transport transparent conductive electrodes for n-type crystalline silicon solar cells
Akdemir, Ozan; Bek, Alpan; İmer, Muhsine Bilge; Department of Micro and Nanotechnology (2018)
Conventional transparent conductive electrodes (TCEs) used in crystal silicon (c-Si) solar cells are commonly made of indium tin oxide (ITO) which provides low sheet resistance and high transparency. However, due to indium scarcity, ITO layers increase the fabrication cost; thus, alternative TCEs, such as fluorine-doped tin oxide (FTO), zinc oxide (ZnO), metal nanowires and Oxide/Metal/Oxide (OMO) multilayers, are being investigated. Conventional solar cells also make use of doped layers, to create the junc...
Avishan, Nardin; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2022-12-20)
Graphene/silicon Schottky solar cells are one of the extensively studied topics during the last decade due to the high conductivity, high transparency, and mechanical flexibility properties of graphene. One of the most efficient and long-lasting methods used for performance enhancement for graphene/silicon Schottky solar cells is silicon surface texturing. It significantly increases the light absorption of silicon by controlling the incoming light through multiple interactions which is called light trapping...
Citation Formats
H. MEHMOOD, H. NASSER, T. Tauqeer, S. HUSSAIN, E. Ozkol, and R. Turan, “Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact,” INTERNATIONAL JOURNAL OF ENERGY RESEARCH, pp. 1563–1579, 2018, Accessed: 00, 2020. [Online]. Available: