Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Physical Device Simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell (P-DASH) based on Hole-selective Molybdenum Oxide (MoOx) with Crystalline Silicon (cSi)
Date
2017-08-23
Author
Mehmood, Haris
Nasser, Hisham
Ozkol, Engin
Tauqeer, Tauseef
Hussain, Shahzad
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
Silicon heterostructure solar cell based on p-type amorphous silicon(aSi:H) poses fundamental performance limitations due to the narrower band gap of aSi: H and the presence of band gap defects states. Such p-type a-Si: H layer can be replaced by novel carrier-selective Transition Metal Oxide (TMO) films such as Molybdenum oxide(MoOx) that offers higher work function and reduced parasitic absorption and thus enhanced photovoltaic performance. In this work, Silvaco TCAD simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell(P-DASH) based on MoOx hole-selective contact has been performed by analyzing different design parameters. It has been observed that higher work function for MoOx results in the formation of reduced Schottky barrier for holes and blocking contact for electrons at cSi/MoOx interface. Coupled with an optimized MoOx thickness and BSF doping concentration, an open-circuit voltage of 724 mV, short-circuit current density of 38.7 mA/cm(2), fill factor of 78%, and Power conversion efficiency(eta) of 22.07% for 4.6 Omega. cm n-type wafer has been numerically demonstrated.
Subject Keywords
Carrier-selective contact
,
DASH
,
Heterostructure
,
Molybdenum oxide
,
Silicon
,
Solar cell
,
Simulation
URI
https://hdl.handle.net/11511/55190
Conference Name
International Conference on Engineering and Technology (ICET)
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer
Mehmood, Haris; Nasser, Hisham; Zaidi, Syed Muhammad Hassan; Tauqeer, Tauseef; Turan, Raşit (2022-01-01)
The dopant-related issues are amongst the major performance bottleneck in crystalline silicon solar cells that can be alleviated via implementation of dopant-free layers. This work presents the implementation of tungsten oxide (WOx) and titanium oxide (TiOx) as hole- and electron-selective films for heterostructure solar cell design whereby n-type Si wafer has been passivated with ultrathin silicon oxide (SiO2) layer. Several designs have been investigated including passivated hydrogenated amorphous silicon...
PASSIVATION OF SILICON SOLAR CELLS VIA LOW TEMPERATURE WET CHEMICAL OXIDATION
KÖKBUDAK, GAMZE; Çiftpınar, Emine Hande; DEMİRCİOĞLU, OLGU; Turan, Raşit (2016-12-01)
In the development of high efficiency crystalline Si solar cells, decreasing bulk and surface recombination velocities of the minority carriers is vital. As the bulk recombination could be suppressed by enhancing the material quality, the effect of surface recombination on cell performance becomes more dominant. Also, recent studies have revealed that the area under the metal contacted region needs to be passivated to minimize the carrier recombination. The passivation of front and back surface of the cell ...
Structural characterization of intrinsic a-Si:H thin films for silicon heterojunction solar cells
Pehlivan, O.; Yilmaz, O.; Kodolbas, A. O.; Duygulu, O.; Tomak, Mehmet (2013-01-01)
We have utilized ex-situ spectroscopic ellipsometry and HRTEM to characterize the optical and structural properties of intrinsic a-Si:H thin layer that plays a key role for the improvement of the open circuit voltage in silicon heterojunction solar cells. Intrinsic a-Si:H films were deposited on (100) p-type CZ silicon wafers by using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique at 225 degrees C substrate temperature and deposition time ranges from 15 s to 1800 s. Observed changes in the imag...
DESIGN, FABRICATION AND CHARACTERIZATION OF INTERDIGITATED BACK CONTACT SOLAR CELLS
Ciftpinar, Emine Hande; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2022-4-22)
The design and development of high-efficiency interdigitated back contact (IBC) solar cells have been studied within the scope of this thesis. Developing a totally industry-compatible, lithography-free, high-throughput process flow for IBC cell fabrication was the main motivation of the thesis. For this, a detailed simulation study was conducted using Quokka 2 software to optimize the rear side cell geometry and understand the effect of bulk and layer properties on the device performance. After determining ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Mehmood, H. Nasser, E. Ozkol, T. Tauqeer, S. Hussain, and R. Turan, “Physical Device Simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell (P-DASH) based on Hole-selective Molybdenum Oxide (MoOx) with Crystalline Silicon (cSi),” presented at the International Conference on Engineering and Technology (ICET), Antalya, TURKEY, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55190.