Physical Device Simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell (P-DASH) based on Hole-selective Molybdenum Oxide (MoOx) with Crystalline Silicon (cSi)

2017-08-23
Mehmood, Haris
Nasser, Hisham
Ozkol, Engin
Tauqeer, Tauseef
Hussain, Shahzad
Turan, Raşit
Silicon heterostructure solar cell based on p-type amorphous silicon(aSi:H) poses fundamental performance limitations due to the narrower band gap of aSi: H and the presence of band gap defects states. Such p-type a-Si: H layer can be replaced by novel carrier-selective Transition Metal Oxide (TMO) films such as Molybdenum oxide(MoOx) that offers higher work function and reduced parasitic absorption and thus enhanced photovoltaic performance. In this work, Silvaco TCAD simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell(P-DASH) based on MoOx hole-selective contact has been performed by analyzing different design parameters. It has been observed that higher work function for MoOx results in the formation of reduced Schottky barrier for holes and blocking contact for electrons at cSi/MoOx interface. Coupled with an optimized MoOx thickness and BSF doping concentration, an open-circuit voltage of 724 mV, short-circuit current density of 38.7 mA/cm(2), fill factor of 78%, and Power conversion efficiency(eta) of 22.07% for 4.6 Omega. cm n-type wafer has been numerically demonstrated.
International Conference on Engineering and Technology (ICET)

Suggestions

Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Physical device simulation of dopant-free asymmetric silicon heterojunction solar cell featuring tungsten oxide as a hole-selective layer with ultrathin silicon oxide passivation layer
Mehmood, Haris; Nasser, Hisham; Zaidi, Syed Muhammad Hassan; Tauqeer, Tauseef; Turan, Raşit (2022-01-01)
The dopant-related issues are amongst the major performance bottleneck in crystalline silicon solar cells that can be alleviated via implementation of dopant-free layers. This work presents the implementation of tungsten oxide (WOx) and titanium oxide (TiOx) as hole- and electron-selective films for heterostructure solar cell design whereby n-type Si wafer has been passivated with ultrathin silicon oxide (SiO2) layer. Several designs have been investigated including passivated hydrogenated amorphous silicon...
DESIGN, FABRICATION AND CHARACTERIZATION OF INTERDIGITATED BACK CONTACT SOLAR CELLS
Ciftpinar, Emine Hande; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2022-4-22)
The design and development of high-efficiency interdigitated back contact (IBC) solar cells have been studied within the scope of this thesis. Developing a totally industry-compatible, lithography-free, high-throughput process flow for IBC cell fabrication was the main motivation of the thesis. For this, a detailed simulation study was conducted using Quokka 2 software to optimize the rear side cell geometry and understand the effect of bulk and layer properties on the device performance. After determining ...
Structural characterization of intrinsic a-Si:H thin films for silicon heterojunction solar cells
Pehlivan, O.; Yilmaz, O.; Kodolbas, A. O.; Duygulu, O.; Tomak, Mehmet (2013-01-01)
We have utilized ex-situ spectroscopic ellipsometry and HRTEM to characterize the optical and structural properties of intrinsic a-Si:H thin layer that plays a key role for the improvement of the open circuit voltage in silicon heterojunction solar cells. Intrinsic a-Si:H films were deposited on (100) p-type CZ silicon wafers by using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique at 225 degrees C substrate temperature and deposition time ranges from 15 s to 1800 s. Observed changes in the imag...
Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H
Saleh, Z. M.; NASSER, H; ÖZKOL, E; GÜNÖVEN, M; Abak, Musa Kurtuluş; Canlı, Sedat; Bek, Alpan; Turan, Raşit (2015-10-24)
Plasmonic interfaces consisting of silver nanoparticles of different sizes (50-100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size an...
Citation Formats
H. Mehmood, H. Nasser, E. Ozkol, T. Tauqeer, S. Hussain, and R. Turan, “Physical Device Simulation of Partial Dopant-Free Asymmetric Silicon Heterostructure Solar Cell (P-DASH) based on Hole-selective Molybdenum Oxide (MoOx) with Crystalline Silicon (cSi),” presented at the International Conference on Engineering and Technology (ICET), Antalya, TURKEY, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55190.