Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation

2014-04-05
Bagherzadeh, Mojtaba
Zare, Maryam
Salemnoush, Taghi
Özkar, Saim
Akbayrak, Serdar
A novel organic-inorganic hybrid heterogeneous catalyst system was obtained from the reaction of the molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone with mesoporous silica containing 3-chloropropyl groups prepared by a direct synthetic approach involving hydrolysis and co-condensation of tetraethylorthosilicate (TEOS) and 3-chloropropyltrimethoxysilane in the presence of the triblock copolymer P123 as template under acidic conditions. Characterization of the functionalized materials by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), N-2 adsorption/desorption, FT-IR and UV-Vis spectroscopy, and thermogravimetric analysis (TGA) reveals that the molybdenum complex is successfully grafted into the pores of the host silica structure. Furthermore, the resulting hybrid material was found to be highly active catalyst in the liquid-phase epoxidation of olefins with t-BuOOH as the oxygen source. Leaching tests and metal analysis of reaction solutions show that the catalytic activity stemmed from the immobilized species, not from the leaching of active species into solution. (C) 2014 Published by Elsevier B.V.
APPLIED CATALYSIS A-GENERAL

Suggestions

Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-04-05)
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite (Pd(0)/SiO2-CoFe2O4) were in situ generated during the hydrolysis of ammonia borane, isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX, XPS and the N-2 adsorption-desorption techniques. All the results reveal that well dispersed palladium(0) nanoparticles were successfully supported on silica coated cobalt ferrite and the resulting Pd(0)/SiO2-CoFe2O4 are highly active, magnetica...
Enantioselective synthesis of 4,5,6,7-tetrahydro-4-oxo-benzofuran-5-yl acetate and 1-benzyl-4,5,6,7-tetrahydro-4-oxo-1(H)-indol-5-yl acetate using chemoenzymatic methods
Demir, Ayhan Sıtkı; Caliskan, Zerrin; Sahin, Ertan (Elsevier BV, 2007-03-01)
The chemoenzymatic synthesis of both of the enantiomers of pharmacologically interesting compounds such as 4,5,6,7-tetrahydro-4-oxobenzofuran-5-yl acetate (2a), 4,5,6,7-tetrahydro-4-oxo-6,6-dimethylbenzofuran-5-yl acetate (2b), and their hydroxy derivatives 3a, 3b, 1-benzyl4,5,6,7-tetrahydro-4-oxo-1(H)-indol-5-yl acetate (5), starting from 6,7-dihydrobenzofuran-4(5H)-one (la), 6,7-dihydro-6,6-dimethylbenzofuran4(5H)-one (7b), and 1-benzyl-6,7-dihydro-1 H-indol-4(5H)-one (4) are reported. Manganese(III) acet...
Highly active, robust and reusable micro-/mesoporous TiN/Si3N4 nanocomposite-based catalysts for clean energy: Understanding the key role of TiN nanoclusters and amorphous Si3N4 matrix in the performance of the catalyst system
Lale, Abhijeet; Mallmann, Maira Debarba; Tada, Shotaro; Bruma, Alina; Özkar, Saim; Kumar, Ravi; Haneda, Masaaki; Machado, Ricardo Antonio Francisco; Iwamoto, Yuji; Demirci, Umit B.; Bernard, Samuel (Elsevier BV, 2020-09-05)
Herein, we developed a precursor approach toward the design of a titanium nitride (TiN)/silicon nitride (Si3N4) nanocomposite with an activated carbon monolith as a support matrix forming a highly micro-/mesoporous component to be used as a Pt support for the catalytic hydrolysis of sodium borohydride (NaBH4) as a model reaction. The experimental data demonstrated that the amorphous Si3N4 matrix, the strong Pt-TiN nanocluster interaction and the synergistic effects between the three components contributed t...
Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride
Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2016-12-01)
Ruthenium(0) nanoparticles supported on xonotlite nanowire (Ru(0)/X-NW) were prepared by the ion exchange of Rua* ions with Ca2+ ions in the lattice of xonotlite nanowire followed by their reduction with sodium borohydride in aqueous solution at room temperature. Ru(0)/X-NW show high catalytic activity and long life time in hydrogen generation from the hydrolysis of sodium borohydride with a turnover frequency value up to 305 min(-1) and a total turnover number of 63,100 mol H-2/mol Ru in hydrogen generatio...
Effect of hydrogen ion-exchange capacity on activity of resin catalysts in tert-amyl-ethyl-ether synthesis
Boz, N; Doğu, Timur; Murtezaoglu, K; Dogu, G (Elsevier BV, 2004-08-10)
Activities of ion-exchange resin catalysts, having different hydrogen exchange capacities ranging between 5.1 and 1.3 meq H+/g, on the etherification reactions of 2M1B (2-methyl-1-butene) and 2M2B (2-methyl-2-butene) with ethanol were experimentally tested in a fixed bed reactor. These catalysts were prepared by the heat treatment of Amberlyst-15 catalysts at 220 degreesC at different durations of time and also by the synthesis of sulfonated styrene divinyl benzene cross-linked resins. Activity of these cat...
Citation Formats
M. Bagherzadeh, M. Zare, T. Salemnoush, S. Özkar, and S. Akbayrak, “Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation,” APPLIED CATALYSIS A-GENERAL, pp. 55–62, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45683.