Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multi-physics design optimisation of a GaN-based integrated modular motor drive system
Download
joe.2018.8258.pdf
Date
2019-06-01
Author
UĞUR, MESUT
Keysan, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
268
views
146
downloads
Cite This
Here, a multi-physics approach is presented for the design optimisation of an integrated modular motor drive (IMMD). The system is composed of a modular permanent magnet synchronous motor (PMSM) and a GaN-based modular motor drive power stage. The multi-physics model includes motor drive inverters and DC-link capacitor bank (electrical model), stator windings and rotor magnets (electromagnetic model), heat sink (thermal model), and a geometrical model. The main purpose of the design optimisation is to obtain the highest power density possible, which is quite critical in integrated drives. Due to the integrated structure, the system has several interdependencies and parameters are selected based on those relationships. An 8kW IMMD system design is proposed from the developed optimisation tool and evaluated. The resultant system has a power density of 0.71kW/lt, drive efficiency of 98.3%, and motor efficiency of 96.6%.
Subject Keywords
Stators
,
Permanent magnet motors
,
Invertors
,
Rotors
,
Synchronous motor drives
,
Gallium compounds
,
Optimisation
,
Gan
,
Power 8. 0 kw
,
Heat sink
,
Rotor magnets
,
Stator windings
,
Gallium nitride-based modular motor drive power stage
,
Gallium nitride-based integrated modular motor drive
,
Immd system design
,
Dc-link capacitor bank
,
Motor drive inverters
,
Multiphysics model
,
Modular permanent magnet synchronous motor
,
Multiphysics approach
,
Multiphysics design optimisation
,
Motor efficiency
,
Resultant system
,
Developed optimisation tool
,
Integrated structure
,
Integrated drives
,
Highest power density possible.
URI
https://hdl.handle.net/11511/45779
Journal
JOURNAL OF ENGINEERING-JOE
DOI
https://doi.org/10.1049/joe.2018.8258
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design of a GaN Based Integrated Modular Motor Drive
Uğur, Mesut; Keysan, Ozan (2018-10-25)
In this study, design procedure of an Integrated Modular Motor Drive (IMMD) is presented focusing on high power density. The design is based on a permanent magnet synchronous motor (PMSM) and GaN FETs. Fractional slot concentrated windings are used on the stator. Slot/pole combination and winding configuration is selected based on having low cogging torque and high winding factor. An extended motor drive inverter topology is proposed where 2-level voltage source inverters are connected both in series and pa...
Tümleşik Modüler Motor Sürücü Sistemi Tasarımı
Uğur, Mesut; Keysan, Ozan (null; 2017-10-25)
Bu çalışmada, bir Tümleşik Modüler Motor Sürücü (TMMS) sistemi tasarımı gerçekleştirilmiştir. TMMS sistemi için modüler bir kesirli oluklu, konsantre sargılı (FSCW), sabit mıknatıslı senkron motor (PMSM) ile birlikte Galyum Nitrat (GaN) teknolojisine dayalı modüler motor sürücü güç katı tasarımı yapılmıştır. Konvansiyonel sistemlere göre %2’lik verim artışı sağlanmıştır. Tümleşik motor sürücü sistemine uygun DA bara kondansatör seçimi gerçekleştirilmiştir. Interleaving tekniği kullanılarak kondansatör boyut...
Comparison of Inverter Topologies Suited for Integrated Modular Motor Drive Applications
Ugur, Mesut; Sarac, Hakan; Keysan, Ozan (2018-08-30)
In this paper, various inverter topologies are compared for integrated modular motor drive (IMMD) applications. Two-level voltage source inverter (2L-VSI), three level voltage source inverter (3L-VSI) and series/parallel combinations of these topologies with system level modularity are compared in terms of voltage and current harmonic spectrum, passive component sizes and motor drive efficiency. New generation wide band-gap GaN power semiconductor devices are utilized in modular topologies and they are comp...
DC Link Capacitor Optimization for Integrated Modular Motor Drives
Ugur, Mesut; Keysan, Ozan (2017-06-21)
In this paper, selection of optimum DC link capacitor for Integrated Modular Motor Drives (IMMD) is presented. First, a review of IMMD technologies is given and current research and future prospects are studied. Inverter topologies and gate drive techniques are evaluated in terms of DC link performance. The urge for volume reduction in IMMD poses a challenge for the selection of optimum DC link capacitor. DC Link capacitor types are discussed and critical aspects in selecting the DC links capacitor are list...
Fault Tolerance Capabilities of Three, Four and Six-Phase Configurations of a 24 Slot Modular PMSM
Bayazıt, Göksenin Hande; Keysan, Ozan (2019-07-01)
In this study, fault tolerance and redundancy capabilities of different phase and winding configurations of an Integrated Modular Motor Drive (IMMD) system are investigated. This is made possible by manipulating gate drive signals of the inverter and phase connections. Three and four phase connections as well as symmetric and asymmetric six-phase topologies are described. Control strategies and redundancy possibilities of these different topologies under an open circuit fault condition are examined in MATLA...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. UĞUR and O. Keysan, “Multi-physics design optimisation of a GaN-based integrated modular motor drive system,”
JOURNAL OF ENGINEERING-JOE
, pp. 3900–3905, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45779.