Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 μW Power Consumption
Date
2019-07-01
Author
Yigit, Halil Andac
Ulusan, Hasan
Yüksel, Muhammed Berat
Chamanian, Salar
Çiftci, Berkay
Koyuncuoglu, Aziz
Muhtaroglu, Ali
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
0
downloads
Cite This
The fully implantable cochlear implant (FICI) interface circuit proposed in this work senses sound harmonics from 8 different piezoelectric cantilever sensors, and generates pulse width modulated biphasic current outputs to stimulate the auditory neurons. Signals from the piezoelectric sensors are amplified, rectified, and sampled. The sampled voltage is held and converted to current by a novel logarithmic voltage-to-current converter. The current is then digitized with a current comparator to determine the width of the generated biphasic current pulses. Continuous interleaved sampling (CIS) is used as the stimulation technique for 8 channels operation. The system is designed and implemented in 0.18 μm HV CMOS process. Measurements show that the circuit is able to generate 15 to 62.5 μs biphasic current pulses with 400 μA peak amplitude, as the input range varies from 60 dB to 105 dB sound pressure level. The total power consumption of 82 and 513 μW have been measured at 70 dB input for 1-channel and have been extrapolated for 8-channels configurations, respectively, which are the lowest powers for FICI interface electronics to the best of our knowledge.
Subject Keywords
Fully implantable cochlear implant
,
Neural stimulation
URI
https://hdl.handle.net/11511/45962
DOI
https://doi.org/10.1109/islped.2019.8824838
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 mu W Power Consumption
Yigit, Halil Andac; Ulusan, Hasan; Yüksel, Muhammed Berat; Chamanian, Salar; Çiftci, Berkay; Koyuncuoglu, Aziz; Muhtarolu, Ali; Külah, Haluk (2019-01-01)
The fully implantable cochlear implant (FICI) interface circuit proposed in this work senses sound harmonics from 8 different piezoelectric cantilever sensors, and generates pulse width modulated biphasic current outputs to stimulate the auditory neurons. Signals from the piezoelectric sensors are amplified, rectified, and sampled. The sampled voltage is held and converted to current by a novel logarithmic voltage-to-current converter. The current is then digitized with a current comparator to determine the...
A 9.03 μW Low Noise Highly Tunable Analog Front-End for Fully Implantable Cochlear Prosthesis
Ozbek, Berkay; Külah, Haluk (2022-01-01)
This paper presents a low noise, low power and highly programmable analog front-end that can interface with an implantable acoustic sensor of a 12-channel fully implantable cochlear implant. Capable of processing outputs from a sensor higher than 20 μVrms as in the speech processors of conventional cochlear implants, the system mimics the filtering in the cochlea with 12 channels (85-6500 Hz) while consuming only 9.03 μW which is one of the lowest power consumption among the analog front-ends for the cochle...
Neural stimulation interface with ultra-low power signal conditioning circuit for fully-implantable cochlear implants
Ulusan, Hasan; Chamanian, Salar; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2018-03-23)
This paper presents an ultra-low power interface circuit to stimulate auditory nerves through fully-implantable cochlear implants (FICIs). The interface circuit senses signals generated from a multi-frequency piezoelectric sensor array, and generates neural stimulation current according to input sound level. Firstly, piezoelectric sensor output is amplified, and compressed with an ultra-low power logarithmic amplifier (LA). This significantly reduces power by eliminating the compression in the next stages. ...
Fully Implantable Cochlear Implant Interface Electronics With 51.2-mu W Front-End Circuit
Ulusan, Hasan; Chamanian, Salar; Ilik, Bedirhan; Muhtaroglu, Ali; Külah, Haluk (2019-07-01)
This paper presents an ultralow power interface circuit for a fully implantable cochlear implant (FICI) system that stimulates the auditory nerves inside cochlea. The input sound is detected with a multifrequency piezoelectric (PZT) sensor array, is signal-processed through a front-end circuit module, and is delivered to the nerves through current stimulation in proportion to the sound level. The front-end unit reduces the power dissipation by combining amplification and compression of the sensor output thr...
A 1-V Nanopower Highly Tunable Biquadratic Gm−C Bandpass Filter for Fully Implantable Cochlear Implants
Özbek, Berkay; Külah, Haluk (2021-12-23)
This paper presents a low power highly tunable second-order Gm−C bandpass filter for auditory signal processing of fully implantable cochlear implants. The resonance frequency of the filter is tunable within the daily acoustic band of 200 - 6000 Hz with a tunable quality factor from 1 to 3. The operational transconductance amplifiers (OTAs) operate in the subthreshold region to achieve low power consumption. The input transistors are driven from the bulk to reduce the transconductance so that the low freque...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. A. Yigit et al., “A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 μW Power Consumption,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45962.