Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A 9.03 μW Low Noise Highly Tunable Analog Front-End for Fully Implantable Cochlear Prosthesis
Date
2022-01-01
Author
Ozbek, Berkay
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
This paper presents a low noise, low power and highly programmable analog front-end that can interface with an implantable acoustic sensor of a 12-channel fully implantable cochlear implant. Capable of processing outputs from a sensor higher than 20 μVrms as in the speech processors of conventional cochlear implants, the system mimics the filtering in the cochlea with 12 channels (85-6500 Hz) while consuming only 9.03 μW which is one of the lowest power consumption among the analog front-ends for the cochlear implants to the best of our knowledge. Although the processing is realized in the analog domain, the system is highly reconfigurable in terms of center frequency, bandwidth and signal amplitude of the channels so that the system becomes compatible with different sensors and maximizes the hearing for each patient. The system was designed in TSMC 180-nm CMOS technology on an active area of 2.4 mm2 and the operation was verified by simulation results.
Subject Keywords
Analog front-end
,
auditory signal processing
,
fully implantable cochlear implant
,
low power consumption
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142923370&origin=inward
https://hdl.handle.net/11511/101461
DOI
https://doi.org/10.1109/biocas54905.2022.9948682
Conference Name
2022 IEEE Biomedical Circuits and Systems Conference, BioCAS 2022
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 mu W Power Consumption
Yigit, Halil Andac; Ulusan, Hasan; Yüksel, Muhammed Berat; Chamanian, Salar; Çiftci, Berkay; Koyuncuoglu, Aziz; Muhtarolu, Ali; Külah, Haluk (2019-01-01)
The fully implantable cochlear implant (FICI) interface circuit proposed in this work senses sound harmonics from 8 different piezoelectric cantilever sensors, and generates pulse width modulated biphasic current outputs to stimulate the auditory neurons. Signals from the piezoelectric sensors are amplified, rectified, and sampled. The sampled voltage is held and converted to current by a novel logarithmic voltage-to-current converter. The current is then digitized with a current comparator to determine the...
A Pulse-Width Modulated Cochlear Implant Interface Electronics with 513 μW Power Consumption
Yigit, Halil Andac; Ulusan, Hasan; Yüksel, Muhammed Berat; Chamanian, Salar; Çiftci, Berkay ; Koyuncuoglu, Aziz; Muhtaroglu, Ali; Külah, Haluk (2019-07-01)
The fully implantable cochlear implant (FICI) interface circuit proposed in this work senses sound harmonics from 8 different piezoelectric cantilever sensors, and generates pulse width modulated biphasic current outputs to stimulate the auditory neurons. Signals from the piezoelectric sensors are amplified, rectified, and sampled. The sampled voltage is held and converted to current by a novel logarithmic voltage-to-current converter. The current is then digitized with a current comparator to determine the...
A 1-V Nanopower Highly Tunable Biquadratic Gm−C Bandpass Filter for Fully Implantable Cochlear Implants
Özbek, Berkay; Külah, Haluk (2021-12-23)
This paper presents a low power highly tunable second-order Gm−C bandpass filter for auditory signal processing of fully implantable cochlear implants. The resonance frequency of the filter is tunable within the daily acoustic band of 200 - 6000 Hz with a tunable quality factor from 1 to 3. The operational transconductance amplifiers (OTAs) operate in the subthreshold region to achieve low power consumption. The input transistors are driven from the bulk to reduce the transconductance so that the low freque...
A Fully-Implantable Mems-Based Autonomous Cochlear Implant
Külah, Haluk; Ulusah, Hasan; Chamanian, Salar; BATU, AYKAN; UĞUR, MEHMET BİROL; Yüksel, Muhammed Berat; Yılmaz, Ali Özgür; YİĞİT, HURŞİT; Koyuncuoglu, Aziz; TOPÇU, ÖZLEM; Soydan, Alper K. (2022-01-01)
© 2022 IEEE.This paper reports a fully implantable, MEMS-based, low-power, energy harvesting, next generation cochlear implant (CI). The implant includes multi-frequency piezoelectric transducers for sound detection and energy harvesting, rectification and signal conditioning electronics, and RF coil for fitting and external powering. These units have outstanding performances: multi-channel transducer can generate 50.7 mVpp (under 100 dB SPL) and recover the daily sound speech signals; signal conditioning I...
A Self-Powered and Efficient Rectifier for Electromagnetic Energy Harvesters
Ulusan, Hasan; Zorlu, Ozge; Muhtaroglu, Ali; Külah, Haluk (2014-11-05)
This paper presents an interface circuit for efficient rectification of voltages from electromagnetic (EM) energy harvesters operating with very low vibration frequencies. The interface utilizes a dual-rail AC/DC doubler which benefits from the full cycle of the input AC voltage, and minimizes the forward bias voltage drop with an active diode structure. The active diodes are powered through an AC/DC quadrupler with diode connected (passive) transistors. The interface system has been validated to drive 22 m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Ozbek and H. Külah, “A 9.03 μW Low Noise Highly Tunable Analog Front-End for Fully Implantable Cochlear Prosthesis,” presented at the 2022 IEEE Biomedical Circuits and Systems Conference, BioCAS 2022, Taipei, Tayvan, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142923370&origin=inward.