Effect of low-energy electron irradiation on (Bi, Pb)-2212 superconductors

2005-06-22
Ogun, SE
Goktas, H
Ozkan, H
Hasanlı, Nızamı
The effect of low-energy electron irradiation on the properties of the Bi-based superconductors is studied. Two sets of polycrystalline (Bi, Pb)-2212 samples were synthesized by heating the appropriate mixtures of powders at 840 degrees C for 100 h, then quenched or furnace cooled to room temperature. The samples were irradiated by low-energy (1-10 keV), pulsed (20 ns) electron beam up to a dose of 6.2 x 10(15) cm(-2). X- ray diffraction patterns, resistance-temperature behaviours, critical currents, and micrographs of the samples were examined before and after the irradiation. For the quenched samples, the normal state resistance increases and the T-c drastically decreases with electron irradiation. For the furnace-cooled samples, T-c first improves by about 15 degrees C up to a dose of 1.7 x 10(15) cm(-2), then drops down with further irradiation. At high levels of doses, the super conducting parameters degrade or vanish due to the increased resistance of the samples. We propose that the electron irradiation causes ionizations that may alter the oxygen and hole concentrations as well as the pining centers and the links between the grains leading the changes reported here.
SURFACE & COATINGS TECHNOLOGY

Suggestions

Effects of gold-induced crystallization process on the structural and electrical properties of germanium thin films
Kabacelik, Ismail; Kulakci, Mustafa; Turan, Raşit; ÜNAL, NURİ (Wiley, 2018-07-01)
Gold-induced (Au-) crystallization of amorphous germanium (-Ge) thin films was investigated by depositing Ge on aluminum-doped zinc oxide and glass substrates through electron beam evaporation at room temperature. The influence of the postannealing temperatures on the structural properties of the Ge thin films was investigated by employing Raman spectra, X-ray diffraction, and scanning electron microscopy. The Raman and X-ray diffraction results indicated that the Au-induced crystallization of the Ge films ...
Effect of heat treatment on the stress and structure evolution of plasma deposited boron nitride thin films
Anutgan, T. Aliyeva; Anutgan, M.; Wdemir, O.; Atilgan, I.; Katircioglu, B. (Elsevier BV, 2008-03-25)
Boron nitride (BN) thin films are deposited at 573 K by plasma enhanced chemical vapor deposition (PECVD) with ammonia (NH3) and hydrogen diluted diborane (15% B2H6 in H-2) source gases. UV-visible and Fourier transform infrared (FTIR) spectroscopies together with surface profilometry are used for the film characterization. These films are hydrogenated (BN:H) whose hydrogen content is pursued following the 1.5 h annealing process at 748 K, 923 K and 1073 K under nitrogen atmosphere. Hydrogen escape with the...
Effect of hydrogenation on B/Si(001)-(1 x 2)
Cakmak, M.; Mete, E.; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2007-09-15)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(001)-(1 x 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favo...
Density functional and dynamics study of the dissociative adsorption of hydrogen on Mg (0001) surface
Kecik, D.; Aydınol, Mehmet Kadri (Elsevier BV, 2009-01-15)
A first principles study is performed to investigate the adsorption characteristics of hydrogen on magnesium surface. Substitutional and on-surface adsorption energies are calculated for Mg (0001) surface alloyed with the selected elements. To further analyze the hydrogen-magnesium interaction, first principles molecular dynamics method is used which simulates the behavior of H-2 at the surface. Also, charge density differences of substitutionally doped surface configurations were illustrated. Accordingly, ...
Effects of boron doping on solid phase crystallization of in situ doped amorphous Silicon thin films prepared by electron beam evaporation
Sedani, Salar H.; Yasar, Ozlen F.; Karaman, Mehmet; Turan, Raşit (Elsevier BV, 2020-01-31)
In this work, we studied solid-phase crystallization of boron-doped non-hydrogenated amorphous Si films fabricated by electron beam evaporation equipped with effusion cells (e-Beam EC) on silicon nitride coated glass substrates. We investigated the effect of boron doping on the crystallization kinetics through a series of experiments with different boron doping concentrations controlled by the effusion cell temperature. We employed Raman spectroscopy, time-of-flight secondary ion mass spectroscopy, grazing ...
Citation Formats
S. Ogun, H. Goktas, H. Ozkan, and N. Hasanlı, “Effect of low-energy electron irradiation on (Bi, Pb)-2212 superconductors,” SURFACE & COATINGS TECHNOLOGY, pp. 118–122, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43875.