Substitution kinetics of Cr(CO)(5)(eta(2)-Z-cyclooctene) with tetracyanoethylene

Kozanoglu, F
Saldamli, S
Özkar, Saim
The weakly bound Z-cyclooctene (zco) ligand in Cr(CO)(5)(eta(2)-zco) is replaced by tetracyanoethylene (tcne) at an observable rate in the temperature range between - 5 and + 10 degreesC yielding the complex Cr(CO)(5)(eta(2)-tcne) as the final product The kinetics of this substitution reaction was studied in toluene solution containing 5% by volume zco by quantitative FTIR spectroscopy The substitution reaction obeys a pseudo-first order kinetics with respect to the concentration of the starting complex. The observed rate constant, k(obs), was determined at four different temperatures and five different concentrations of the entering ligand tcne in the range of 0.033-0.33 M. From the evaluation of kinetic data a possible reaction mechanism was proposed in which the rate-determining step is the cleavage of metal-olefin bond in the complex Cr(CO)(5)(eta(2)-zco). A rate law was derived from the proposed reaction mechanism. From the dependence of k(obs) on the entering ligand concentration, the rate constant k(1) for the rate determining step was estimated at all temperatures. The activation enthalpy (DeltaHdegrees = 100 +/- 3kJ(.)mol(-1)) and the activation entropy (DeltaSdegrees = 59 +/- 3 J K-1 mol(-1)) were determined for this rate-determining step from the evaluation of k(1) values at different temperatures. The large positive value of the activation entropy is consistent with the dissociative nature of reaction. The large value of the activation enthalpy, close to the chromium-olefin bond dissociation energy, also supports this dissociative rate-determining step of the substitution reaction.


Substitution kinetics of W(CO)(5)(eta(2)-bis(trimethylsilyl)ethyne) with triphenylbismuthine
Bayram, Ercan; Özkar, Saim (Elsevier BV, 2006-07-15)
The labile complex W(CO)(5)(eta(2)-btmse) undergoes replacement of bis(trimethylsilyl)ethyne, btmse, by triphenylbismuthine in cyclohexane solution at an observable rate in the temperature range of 35-50 degrees C yielding almost solely W(CO)(5)(BiPh3) as the final product. The kinetics of this substitution reaction was studied in cyclohexane solution by quantitative FT-IR spectroscopy. The substitution reaction obeys a pseudo-first-order kinetics with respect to the concentration of the starting complex. T...
Thermal polymerization of bis(4-fluoro-2,6-dibromophenolato)bis(pyridine)copper(II) complex in solution and in solid state
Kisakurek, D; Akbas, M; Bilir, N (Wiley, 1998-02-01)
The synthesis of the bis(4-fluoro-2,6-dibromophenolato)bis(pyridine)copper(II) complex was achieved from aqueous solution, and its characterization was performed by means-of IR and CHN elemental analysis. Thermal polymerization of this complex was carried out in toluene and in solid state. The structural analysis of the polymers was performed with H-1 NMR, C-13 NMR and FTIR analysis; the glass transition temperature was found to be at 160 degrees C. 4-Fluoro-2,6-dibromophenolate, with the non-chelating liga...
Insertion of Fischer Carbene Complexes into the Carbon-Carbon Bond of 1,2-Diphenylcyclopropenone: Formation of Cyclobutenones and o- and p-Methoxyphenol Derivatives
Zora, Metin (American Chemical Society (ACS), 1994-08-01)
OZER, Z; Özkar, Saim (Informa UK Limited, 1992-01-01)
Pentacarbonylphospholemetal(0) and cis-tetracarbonylbis(phosphole)metal(0) complexes were synthesized from the thermal reaction of M(CO)5(THF) and M(CO)4(COD) (M: Cr, Mo, W) with corresponding phosphole (1-phenyl-3,4-dimethylphosphole, 1-phenyl-3-methylphosphole, and 1-phenylphosphole). These complexes were isolated as orange crystals by column chromatography on silicagel at 253 K and crystallization from n-hexane at 223 K and characterized by means of IR and NMR (H-1, C-13, and P-31). Spectroscopic data sh...
Complex-radical terpolymerization of glycidyl(methyl) methacrylates, styrene, and maleic anhydride
Rzaev, ZMO (Wiley, 1999-04-15)
The ternary copolymerizations of glycidlyl(methyl) methacrylates (GMA and MMA), styrene (St), and maleic anhydride (MA), considered as acceptor(A(1))donor-acceptor(A(2)) systems, were carried out in methyl ethyl ketone in the presence of benzoyl peroxide as initiator at 50-80 degrees C. Constants of copolymerization, complex formation, and some kinetic parameters for the monomer systems studied were determined by the methods of Hanna-Ashbaugh, Kelen-Tudos, and Seiner-Litt, as well as by dilatometry, respect...
Citation Formats
F. Kozanoglu, S. Saldamli, and S. Özkar, “Substitution kinetics of Cr(CO)(5)(eta(2)-Z-cyclooctene) with tetracyanoethylene,” JOURNAL OF ORGANOMETALLIC CHEMISTRY, pp. 274–280, 2002, Accessed: 00, 2020. [Online]. Available: