Numerical calculation of backfilling of scour holes

Sumer, B Mutlu
Baykal, Cüneyt
Fuhrman, David R
Jacobsen, Niels G
Fredsoe, Jorgen
A fully-coupled hydrodynamic and morphologic CFD model is presented for simulating backfilling processes around structures. The hydrodynamic model is based on Reynolds-averaged Navier-Stokes equations, coupled with two-equation k-ω turbulence closure. The sediment transport model consists of separate bed and suspended load descriptions, the latter based on a turbulent diffusion equation coupled with a reference concentration function near the sea bed boundary. Bed morphology is based on the sediment continuity (Exner) equation. The present simulations have utilized continuous morphologic updating in time, both the hydrodynamic and morphologic solutions being advanced with the same time increment. In this way, the simulations illustrate the ability to simulate fully-coupled hydrodynamic and morphologic developments based on continuous feedback. The model has been implemented for two kinds of structures: piles, and pipelines. Initial scour holes are generated by the same model. The numerical results appear to be in accord with the existing experimental information.


Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines
Fuhrman, David R; Baykal, Cüneyt; Sumer, B Mutlu; Jacobsen, Niels G; Fredsoe, Jorgen (2014-12-01)
A fully-coupled hydrodynamic/morphodynamic numerical model is presented and utilized for the simulation of wave-induced scour and backfilling processes beneath submarine pipelines. The model is based on solutions to Reynolds-averaged Navier-Stokes equations, coupled with k - omega turbulence closure, with additional bed and suspended load descriptions forming the basis for sea bed morphology. The morphological evolution is updated continuously, rather than being based e.g. on period- or other time-averaging...
Numerical modeling of short term morphological changes around coastal structures and at the river mouths
Demirci, Ebru; Baykal, Cüneyt; Güler, Işıkhan; Department of Civil Engineering (2016)
In this study, XBeach, a two dimensional depth averaged numerical model developed mainly for simulating nearshore hydro- and morphodynamics is applied to two case studies; i) laboratory experiments on short-term morphological changes around a detached breakwater and a T-groin and ii) a fluvial dominated coastal flooding event at the Manavgat river mouth between dates, 4th and 15th December, 1998. In the first part of study, the numerical model is calibrated for the wave, current and bottom evolution conditi...
Stochastic modelling of biochemical networks and inference of modelparameters
Purutçuoğlu Gazi, Vilda (null, Springer, 2018-01-01)
There are many approaches to model the biochemical systems deterministically or stochastically. In deterministic approaches, we aim to describe the steady-state behaviours of the system, whereas, under stochastic models, we present the random nature of the system, for instance, during transcription or translation processes. Here, we represent the stochastic modelling approaches of biological networks and explain in details the inference of the model parameters within the Bayesian framework.
Parallel solution of soil-structure interaction problems on pc clusters
Bahçecioğlu, Tunç; Çetin, Kemal Önder; Department of Civil Engineering (2011)
Numerical assessment of soil structure interaction problems require heavy computational efforts because of the dynamic and iterative (nonlinear) nature of the problems. Furthermore, modeling soil-structure interaction may require finer meshes in order to get reliable results. Latest computing technologies must be utilized to achieve results in reasonable run times. This study focuses on development and implantation of a parallel dynamic finite element analysis method for numerical solution of soil-structure i...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Citation Formats
B. M. Sumer, C. Baykal, D. R. Fuhrman, N. G. Jacobsen, and J. Fredsoe, “Numerical calculation of backfilling of scour holes,” 2014, Accessed: 00, 2020. [Online]. Available: