Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Order-Preserving Languages for the Supervisory Control of Automated Manufacturing Systems
Download
10.1109:ACCESS.2020.3010030.pdf
Date
2020-01-01
Author
Nooruldeen, Anas
Schmidt, Klaus Verner
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
5
downloads
Automated manufacturing systems (AMSs) consist of computer-controlled interconnected manufacturing components (MCs) that are used to transport and process different product types. Each product type requires a certain sequence of processing steps in different MCs. Hereby, multiple product types can share processing steps on the same MC and the paths of different products types can overlap. In this paper we consider the modeling of AMSs in the scope of supervisory control for discrete event systems (DES). On the one hand, a suitable AMS model must allow the representation of sequential and concurrent processing steps in MCs. On the other hand, such model must be able to track different product types traveling through the AMS so as to process the products correctly. While previous work is commonly concerned with the first requirement, this paper identifies that the existing literature lacks a general treatment of the second requirement. Accordingly, we first introduce order-preserving (OP) languages that preserve the order of different product types in MCs and we propose a suitable finite state automaton model for OP languages. Then, we show that the composition of OP languages again leads to an OP language. That is, modeling MCs by OP languages, an OP model of a complete AMS that is suitable for supervisory control is obtained. In addition, it is possible to use both OP models and non-OP models for general AMSs, where MCs have different properties. We demonstrate the applicability of the proposed modeling technique by a flexible manufacturing system example.
Subject Keywords
General Engineering
,
General Materials Science
,
General Computer Science
,
Supervisory control
,
Manufacturing systems
,
Automata
,
Computational modeling
,
Discrete-event systems
,
Analytical models
,
Automated manufacturing systems
URI
https://hdl.handle.net/11511/46251
Journal
IEEE ACCESS
DOI
https://doi.org/10.1109/access.2020.3010030
Collections
Department of Electrical and Electronics Engineering, Article