Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Order-Preserving Languages for the Supervisory Control of Automated Manufacturing Systems
Download
10.1109:ACCESS.2020.3010030.pdf
Date
2020-01-01
Author
Nooruldeen, Anas
Schmidt, Klaus Verner
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
197
views
150
downloads
Cite This
Automated manufacturing systems (AMSs) consist of computer-controlled interconnected manufacturing components (MCs) that are used to transport and process different product types. Each product type requires a certain sequence of processing steps in different MCs. Hereby, multiple product types can share processing steps on the same MC and the paths of different products types can overlap. In this paper we consider the modeling of AMSs in the scope of supervisory control for discrete event systems (DES). On the one hand, a suitable AMS model must allow the representation of sequential and concurrent processing steps in MCs. On the other hand, such model must be able to track different product types traveling through the AMS so as to process the products correctly. While previous work is commonly concerned with the first requirement, this paper identifies that the existing literature lacks a general treatment of the second requirement. Accordingly, we first introduce order-preserving (OP) languages that preserve the order of different product types in MCs and we propose a suitable finite state automaton model for OP languages. Then, we show that the composition of OP languages again leads to an OP language. That is, modeling MCs by OP languages, an OP model of a complete AMS that is suitable for supervisory control is obtained. In addition, it is possible to use both OP models and non-OP models for general AMSs, where MCs have different properties. We demonstrate the applicability of the proposed modeling technique by a flexible manufacturing system example.
Subject Keywords
General Engineering
,
General Materials Science
,
General Computer Science
,
Supervisory control
,
Manufacturing systems
,
Automata
,
Computational modeling
,
Discrete-event systems
,
Analytical models
,
Automated manufacturing systems
URI
https://hdl.handle.net/11511/46251
Journal
IEEE ACCESS
DOI
https://doi.org/10.1109/access.2020.3010030
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Hierarchical and modular control of reconfigurable manufacturing systems
Arslan, Övül; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2022-2-11)
Reconfigurable manufacturing systems (RMS) were introduced as a new manufacturing concept for rapidly adjusting the production capacity and functionality of manufacturing systems. Hereby, the control of RMS requires realizing each desired configuration and changing between configurations on request, whereby a suitable design approach should scale to large-scale systems. In this thesis, we develop a controller design method for RMS that supports modular design and is scalable to RMS of large size. As the f...
Operation assignment and capacity allocation problem in automated manufacturing systems
Bilgin, Selin; Azizoğlu, Meral (Elsevier BV, 2009-03-01)
We address an operation assignment and capacity allocation problem that arises in semiconductor industries and flexible manufacturing systems. We assume the automated machines have scarce time and tool magazine capacities and the tools are available in limited quantities. The aim is to select a subset of operations with maximum total weight. We show that the problem is NP-hard in the strong sense, develop two heuristics and a Tabu Search procedure. The results of our computational tests have revealed that o...
Optimal configuration changes for reconfigurable manufacturing systems
Schmidt, Klaus Verner (2013-01-01)
Reconfigurable manufacturing systems (RMSs) are designed to quickly adapt to new products and production requirements. To this end, RMSs need to be able to perform fast changes between different configurations. This paper investigates the reconfiguration of RMSs in a supervisory control framework. Different from previous work, we formulate and solve a reconfiguration problem that allows to start a newly requested configuration before the previously active configuration has been completed. Our solution is op...
Dynamic modelling in micromachining
Yılmaz, Emre Ersoy; Özgüven, Hasan Nevzat; Budak, Erhan; Department of Mechanical Engineering (2015)
Micro milling applications are rapidly growing in various industries such as micro machines, medical, electro-mechanical component production etc. Due to very high precision requirements, dimensional accuracy and surface quality of micro milled components are very critical. As commonly known chatter vibrations arising due to instability in cutting yield poor surface finish and reduced tool life with potential damage to cutting edges and machine tool. Chatter vibrations are even more critical for micro milli...
Computation of supervisors for reconfigurable machine tools
Schmidt, Klaus Verner (2012-01-01)
The rapid reconfiguration of manufacturing systems is an important issue in today's manufacturing technology in order to adjust the production to varying product demands and types. In this paper, we study the control of reconfigurable machine tools (RMTs) with the aim of fast reconfiguration and an easy controller implementation. We first formulate a particular reconfiguration problem for RMTs in a discrete event system setting, and then provide necessary and sufficient conditions for its solution. Moreover...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Nooruldeen and K. V. Schmidt, “Order-Preserving Languages for the Supervisory Control of Automated Manufacturing Systems,”
IEEE ACCESS
, pp. 131901–131919, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46251.