Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Thermoviscoelasticity of fibre reinforced rubbery polymers
Date
2010-03-26
Author
Dal, Hüsnü
Kaliske, Michael
Hickmann, Rico
Cherif, Chokri
Jurk, Rene
Heinrich, Gert
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Fibre or textile reinforcement is commonly used in order to enhance the directional mechanical and thermal properties of rubbery polymers. For the quantitative analysis and design of fibre reinforced elastomeric materials, precise description of the composite behaviour plays a crucial role. To this end, a coupled thermomechanical formulation at finite strains is presented. The anisotropic thermal and mechanical properties are homogenized analytically throughout the constitutive description. For the description of the directional mechanical properties, logarithmic strain measures at fibre orientation direction are introduced in order to describe the fibre behaviour. The viscosity plays a crucial role in the heating of rubber components under cyclic loading. Contribution of thermodynamically consistent heat sources to the thermal problem are also considered. The coupled finite element implementation based on the isothermal split algorithm is demonstrated by a benchmark numerical example.
URI
https://hdl.handle.net/11511/46263
DOI
https://doi.org/10.1002/pamm.201010136
Collections
Department of Mechanical Engineering, Conference / Seminar