Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Circumferentially cracked hollow cylinder under thermal shock - Revisited
Date
2008-01-01
Author
Kadıoğlu, Fevzi Suat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
157
views
0
downloads
Cite This
The axisymmetric problem of a circumferentially cracked transversely isotropic hollow cylinder under thermal shock is considered. It is demonstrated that appropriately normalized stress intensity factors (SIFs) depend only on three material parameters and the transient temperature distribution. It is also found that only one of these parameters has a significant effect on the normalized SIFs. Reduction in the number of material parameters, from seven to practically one, makes it possible to propose simple approximate expressions for the calculation of normalized SIFs in terms of geometric parameters. Both inner and outer surface cracks are addressed. Approximate expressions giving SIFs are presented.
Subject Keywords
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/46298
Journal
JOURNAL OF THERMAL STRESSES
DOI
https://doi.org/10.1080/01495730802250797
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Circumferentially cracked bimaterial hollow cylinder under mechanical and transient thermal loading
Kadıoğlu, Fevzi Suat (Informa UK Limited, 2006-12-01)
The analytical solution for the problem of a circumferential inner surface crack in an elastic, infinitely long composite hollow cylinder, made of two concentric perfectly bonded transversely isotropic cylinders is considered. Uniform axial loading and thermal loading in the form of a sudden cooling on the inner boundary are considered. Out of 10 material parameters involved, two bimaterial parameters and three material parameters for each layer upon which the stress intensity factor depends under uniform l...
Damage behavior of air-plasma-sprayed thermal barrier coatings under foreign object impact
Dericioğlu, Arcan Fehmi; Kagawa, Y; Kasano, H (Wiley, 2003-10-01)
How do thermal barrier coatings react to the impact of a foreign object? The authors examined the damage done by a projectile to an air‐plasma‐sprayed coating system. Apart from permanent deformation, chipping of the ceramic top coat around the impression sites occurs at impact velocities above 150 m s–1. At increasing impact speed, the cracks in the top coat tend to elongate and result in coating removal (see Figure for a cross‐section).
Reflectance spectra and refractive index of a Nd : YAG laser-oxidized Si surface
Aygun, G; Atanassova, E; Turan, Raşit; Babeva, T (Elsevier BV, 2005-02-15)
The reflectance spectra and refractive index of Nd:YAG laser-oxidized SiO2 layers with thicknesses from 15 to 75 nm have been investigated with respect to the laser beam energy density and substrate temperature. Thickness and refractive index of films have been determined from reflectance measurements at normal light incidence in the spectral range 300-800 nm. It was found that the oxide-growth conditions at higher substrate temperatures and laser powers greater than 3.36 J cm(-2) provides a better film qua...
Stress distributions in cooling fins of variable thickness with and without rotation
Eraslan, Ahmet Nedim (Informa UK Limited, 2005-08-01)
A computational model is developed to predict elastic and elastic-plastic stress distribution in a nonlinearly hardening cooling fin of variable thickness subject to centrifugal force. The model is based on a realistic conduction-convection mechanism, von Mises yield criterion, Henky's deformation theory and a Swift-type strain hardening law. Temperature dependency of modulus of elasticity, uniaxial yield limit, coefficient of thermal expansion, and thermal conductivity of the fin material is taken into acc...
Thermal lattice scattering mobility and carrier effective mass in intrinsic Tl2InGaTe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-04-18)
Systematic structural, dark electrical resistivity and Hall coefficient measurements have been carried out on n- type Tl2InGaTe4 single crystals. The data from x- ray powder diffraction allowed determination of the tetragonal unit cell lattice parameters. Analysis of the electrical resistivity and carrier concentration, which was recorded in the temperature range 210 - 350 K, reveals the intrinsic type of conduction with an average energy band gap of 0.85 eV. The temperature- dependent Hall mobility was obs...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. S. Kadıoğlu, “Circumferentially cracked hollow cylinder under thermal shock - Revisited,”
JOURNAL OF THERMAL STRESSES
, pp. 1056–1078, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46298.