Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems
Date
2006-01-01
Author
Eraslan, Ahmet Nedim
Akis, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Closed form solutions to functionally graded rotating solid shaft and rotating solid disk problems are obtained under generalized plane strain and plane stress assumptions, respectively. The nonhomogeneity in the material arises from the fact that the modulus of elasticity of the material varies radially according to two different continuously nonlinear forms: exponential and parabolic. Both forms contain two material parameters and lead to finite values of the modulus of elasticity at the center. Analytical expressions for the stresses at the center are determined. These limiting expressions indicate that at the center of shaft/disk: (i) the stresses are finite, (ii) the radial and the circumferential stress components are equal, and (iii) the values of the stresses are independent of the variation of the modulus of elasticity. It is also shown mathematically that the nonhomogeneous solutions presented here reduce to those of homogeneous ones by an appropriate choice of the material parameters describing the variation of the modulus of elasticity.
Subject Keywords
Mechanical Engineering
,
Computational Mechanics
URI
https://hdl.handle.net/11511/46338
Journal
ACTA MECHANICA
DOI
https://doi.org/10.1007/s00707-005-0276-5
Collections
Department of Engineering Sciences, Article