Polycarbonate-polypyrrole mixed matrix gas separation membranes

The gas separation properties of the polycarbonate-polypyrrole mixed matrix membranes were evaluated based on the introduction of conducting polymer as powder fillers. The electrically conductive fillers are obtained from two main synthesis routes namely electrochemical and chemical methods. The permeation properties of polycarbonate-polypyrrole systems are highly dependent on the synthesis method (electrochemical or chemical) and also the membrane casting conditions (casting solvent type). The introduction of electrochemically synthesized polypyrrole fillers distorted the polycarbonate matrix by forming cavities which resulted in higher permeation rates of electrochemically synthesized polypyrrole-polycarbonate (ECPPY-PC) membranes compared to both pure polycarbonate (PC) and the chemically synthesized polypyrrole-polycarbonate (CPPY-PC) films accompanied with a loss in selectivities. On the other hand, the densified structure of CPPY-PC membranes resulted in an improvement of the selectivities of industrially important gas pairs (H-2/N-2, O-2/N-2 and H-2/CH4). 0 2003 Elsevier B.V. All rights reserved.


Development of enhanced ultrafiltration methodologies for the resolution of racemic benzoin
Olceroglu, Ayse Hande; Çalık, Pınar; Yılmaz, Levent (Elsevier BV, 2008-09-15)
In the scope of achieving the separation of chiral molecules, enzyme enhanced ultrafiltration (EEUF), a new method based on polymer enhanced ultrafiltration (PEUF), utilizing apoenzymes as ligands, was developed. Benzoin was chosen as the model chiral molecule. Bovine serum albumin (BSA) and apo form of benzaldehyde lyase (BAL) (E.C. were used as chiral ligands in PEUF and EEUF experiments, respectively. In order to bind to the target enantiomer well, the addition of ligand to the benzoin solution...
Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes
Nunes, Suzana P.; Çulfaz Emecen, Pınar Zeynep; Ramon, Guy Z.; Visser, Tymen; Koops, Geert Henk; Jin, Wanqin; Ulbricht, Mathias (Elsevier BV, 2020-03-15)
The state-of-the-art of membrane technology is characterized by a number of mature applications such as sterile filtration, hemodialysis, water purification and gas separation, as well as many more niche applications of successful membrane-based separation and processing of fluid mixtures. The membrane industry is currently employing a portfolio of established materials, mostly standard polymers or inorganic materials (not originally developed for membranes), and easily scalable manufacturing processes such...
Fouling behavior of microstructured hollow fibers in cross-flow filtrations: Critical flux determination and direct visual observation of particle deposition
Çulfaz Emecen, Pınar Zeynep; Wessling, M.; Lammertink, R.G.H. (Elsevier BV, 2011-04-15)
The fouling behavior of microstructured hollow fiber membranes was investigated in cross-flow filtrations of colloidal silica and yeast. In addition to the as-fabricated microstructured fibers, twisted fibers made by twisting the microstructured fibers around their own axes were tested and compared to round fibers. In silica filtrations, the three different fibers showed similar behavior and increasing Reynolds number increased the critical fluxes significantly. In yeast filtrations, the twisted fiber perfo...
Dielectric Properties of Ethanol and Gasoline Mixtures by Terahertz Spectroscopy and an Effective Method for Determination of Ethanol Content of Gasoline
ARIK, Enis; Altan, Hakan; Esentürk, Okan (American Chemical Society (ACS), 2014-05-01)
Investigation of frequency dependent permittivity of mixture solutions provides information on the role of intermolecular interactions on relaxation processes of solvent and solute molecules. In this study the dielectric properties of ethanol/gasoline mixtures in the terahertz spectral region are investigated. Frequency dependent absorption coefficients, refractive indices, and complex permittivities of pure ethanol and gasoline, and their mixtures at varying ethanol volume percentages (v/v %) are reported....
Helical hollow fibers via rope coiling: Effect of spinning conditions on geometry and membrane morphology
Yucel, Hazal; Çulfaz Emecen, Pınar Zeynep (Elsevier BV, 2018-08-01)
Helical hollow fiber membranes from poly(ether sulfone) were spun via dry-wet spinning, making use of the liquid rope coiling phenomenon. The polymer solution composition was changed by varying the coagulation value and adding PEG400 as pore former. The bore liquid composition, outer coagulation bath temperature, air gap, polymer dope and bore liquid flowrates were varied to map the conditions where helical fibers form. It was observed that increasing air gap changed fiber geometry from straight to helical....
Citation Formats
P. Hacarlioglu, L. K. Toppare, and L. Yılmaz, “Polycarbonate-polypyrrole mixed matrix gas separation membranes,” JOURNAL OF MEMBRANE SCIENCE, pp. 51–62, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46508.