Modeling of spherulite microstructures in semicrystalline polymers

Oktay, H. Emre
Gürses, Ercan
Semicrystalline polymers are composed of crystalline structures together with amorphous polymer chain networks and therefore they exhibit deformation mechanisms of both crystalline materials and amorphous polymers. One of the most common microstructures observed in semicrystalline polymers is the spherulite microstructure in which crystalline lamellae are embedded in a matrix of amorphous material and grow out from a common central nucleus in radial directions. The mechanical behavior of semicrystalline polymers is strongly dependent on the underlying spherulite microstructure. Therefore, characterization of the deformation of spherulites is very important to understand the mechanical behavior of semicrystalline polymers. In this work, we propose a new FEM-based model for semicrystalline polymers which explicitly discretizes the spherulite microstructure consisting of crystalline and amorphous phases. In the model, a viscoplastic crystal plasticity model is employed for the crystalline phase, whereas 8-chain model is employed for the amorphous phase. The model captures the evolution of inhomogeneous plastic deformation activity in a spherulite microstructure, as well as the important features of the spherulite deformation reported in the literature.


Simulation of crystallization and glass formation processes for binary Pd-Ag metal alloys
Kart, HH; Uludogan, M; Cagin, T; Tomak, Mehmet (2003-09-12)
Glass formation and crystallization process of Pd-Ag metallic alloys are investigated by means of molecular dynamics simulation. This simulation uses the quantum Sutton-Chen (Q-SC) potential to study structural and transport properties of Pd-Ag alloys. Cooling rates and concentration effects on the glass formation and crystallization of binary alloys considered in this work are investigated. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Increment of...
Simulations for a novel magnetic resonator with V-shaped structures
Ekmekci, Evren; Sayan, Gönül (2007-01-01)
It is demonstrated in this paper that a novel structure which consists of V-shaped conducting strips may exhibit magnetic resonance effect similar to the split ring resonator structures. The simulations have been done using Ansoft HFSS v9.2. By applying a time varying electric field to the V-shaped structure, the location of the resulting resonant frequency has been determined and furthermore, the dependency of resonance frequency on arm width, arm angle, and dielectric thickness have been investigated.
Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer
Buber, Ece; SÖYLEMEZ, SANİYE; UDUM, YASEMİN; Toppare, Levent Kamil (2018-07-01)
Since conjugated polymers are an important class of materials with remarkable properties in biosensor applications, in this study, a novel glucose biosensor based on a conjugated polymer was fabricated via the electropolymerization of the monomer 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2',3'-c]phenazine onto a graphite electrode surface. Glucose oxidase (GOx) was used as the model biological recognition element. As a result of the enzymatic reaction between GOx and glucose, the glucose amount was det...
Modelling of Diffusion in Random Packings of Core-Shell Particles
Hatipoğlu, Emre; Koku, Harun (Hacettepe University, 2017-04-01)
Core-Shell particles are commonly used materials in chromatography. In this study, a mathematical model that mimics diffusion around Core-Shell particles was developed. A random-walk based algorithm was implemented to simulate diffusion and a Core-Shell particle geometry was computationally formed, based on simple geometric constructs and relations. Diffusion simulations were carried out on a randomly packed geometry formed from these particles. The behavior of time-dependent diffusivity data obtained from ...
Study of the Influence of Transition Metal Atoms on Electronic and Magnetic Properties of Graphyne Nanotubes Using Density Functional Theory
Alaei, Sholeh; Jalili, Seifollah; Erkoç, Şakir (Informa UK Limited, 2015-01-01)
Density functional theory calculations were used to study the adsorption of three transition metal atoms (Fe, Co, and Ni) on the external surface of two zigzag and two armchair graphyne nanotubes. The most stable position for the adsorption of all three metal atoms on all nanotubes is on the acetylenic ring. The metal atom remains in the plane of the acetylenic ring and makes six bonds with neighboring carbon atoms. Fe and Co complexes are magnetic and show different properties such as metal, semimetal, hal...
Citation Formats
H. E. Oktay and E. Gürses, “Modeling of spherulite microstructures in semicrystalline polymers,” MECHANICS OF MATERIALS, pp. 83–101, 2015, Accessed: 00, 2020. [Online]. Available: