Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulations for a novel magnetic resonator with V-shaped structures
Date
2007-01-01
Author
Ekmekci, Evren
Sayan, Gönül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
It is demonstrated in this paper that a novel structure which consists of V-shaped conducting strips may exhibit magnetic resonance effect similar to the split ring resonator structures. The simulations have been done using Ansoft HFSS v9.2. By applying a time varying electric field to the V-shaped structure, the location of the resulting resonant frequency has been determined and furthermore, the dependency of resonance frequency on arm width, arm angle, and dielectric thickness have been investigated.
Subject Keywords
Magnetic resonance
,
Resonant frequency
,
Remuneration
,
Strips
,
Optical ring resonators
,
Dielectrics
URI
https://hdl.handle.net/11511/35189
DOI
https://doi.org/10.1109/siu.2007.4298662
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical analysis, design and two port equivalent circuit models for split ring resonator arrays
Yaşar Örten, Pınar; Sayan, Gönül; Department of Electrical and Electronics Engineering (2010)
Split ring resonator (SRR) is a metamaterial structure which displays negative permeability values over a relatively small bandwidth around its magnetic resonance frequency. Unit SRR cells and arrays have been used in various novel applications including the design of miniaturized microwave devices and antennas. When the SRR arrays are combined with the arrays of conducting wires, left handed materials can be constructed with the unusual property of having negative valued effective refractive indices. In th...
Modeling of spherulite microstructures in semicrystalline polymers
Oktay, H. Emre; Gürses, Ercan (2015-11-01)
Semicrystalline polymers are composed of crystalline structures together with amorphous polymer chain networks and therefore they exhibit deformation mechanisms of both crystalline materials and amorphous polymers. One of the most common microstructures observed in semicrystalline polymers is the spherulite microstructure in which crystalline lamellae are embedded in a matrix of amorphous material and grow out from a common central nucleus in radial directions. The mechanical behavior of semicrystalline pol...
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Experimental and mathematical investigation of mass transfer in food andhydrogel systems using magnetic resonance imaging and NMR relaxometry
Çıkrıkcı, Sevil; Öztop, Halil Mecit; Department of Food Engineering (2019)
Nuclear magnetic resonance (NMR) and Magnetic Resonance Imaging (MRI) are well-known non-invasive characterization methods used in a wide range of areas; from medical to food applications. NMR experiments are conducted either through spectroscopy with high resolution systems or with relaxometery (Time Domain NMR) through mid or low field systems. Time domain NMR is primarily based on relaxation times and diffusion measurements from the signal coming from the whole sample while MRI enables to visualize the i...
Practical Realization of Magnetic Resonance Conductivity Tensor Imaging (MRCTI)
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2013-03-01)
Magnetic resonance conductivity tensor imaging (MRCTI) is an emerging modality which reconstructs images of anisotropic conductivity distribution within a volume conductor. Images are reconstructed based on magnetic flux density distribution induced by an externally applied probing current, together with a resultant surface potential value. The induced magnetic flux density distribution is measured using magnetic resonance current density imaging techniques. In this study, MRCTI data acquisition is experime...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ekmekci and G. Sayan, “Simulations for a novel magnetic resonator with V-shaped structures,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35189.