Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Earthquake stresses and effective damping in concrete gravity dams
Date
2014-03-01
Author
Akpinar, Ugur
Binici, Barış
Arıcı, Yalın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
243
views
0
downloads
Cite This
Dynamic analyses for a suite of ground of motions were conducted on concrete gravity dam sections to examine the earthquake induced stresses and effective damping. For this purpose, frequency domain methods that rigorously incorporate dam-reservoir-foundation interaction and time domain methods with approximate hydrodynamic foundation interaction effects were employed. The maximum principal tensile stresses and their distribution at the dam base, which are important parameters for concrete dam design, were obtained using the frequency domain approach. Prediction equations were proposed for these stresses and their distribution at the dam base. Comparisons of the stress results obtained using frequency and time domain methods revealed that the dam height and ratio of modulus of elasticity of foundation rock to concrete are significant parameters that may influence earthquake induced stresses. A new effective damping prediction equation was proposed in order to estimate earthquake stresses accurately with the approximate time domain approach.
Subject Keywords
Concrete gravity dams
,
Stress estimation
,
Damping
,
Numerical simulation
,
Linear dynamic analysis
,
Dam-reservoir-foundation interaction
URI
https://hdl.handle.net/11511/46568
Journal
EARTHQUAKES AND STRUCTURES
DOI
https://doi.org/10.12989/eas.2014.6.3.251
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Seismic assessment of a monolithic RCC gravity dam including three dimensional dam-foundation-reservoir interaction
Yilmazturk, Sema Melek; Arıcı, Yalın; Binici, Barış (2015-10-01)
In this study, the seismic response of a tall roller compacted concrete gravity dam located in a highly seismic zone is investigated. The response of this monolithic RCC gravity dam is examined by conducting analyses including three dimensional dam-reservoir-foundation interaction. The effect of the foundation/structure moduli ratio, material damping, and bottom absorption and reservoir compressibility on the performance of the dam were investigated. Selection of an optimal downstream slope was discussed ba...
Pseudo-dynamic testing of a concrete gravity dam
Aldemir, Alper; Binici, Barış; Arıcı, Yalın; Kurç, Özgür; Canbay, Erdem (2015-09-01)
Inspired from the simplified single degree of freedom modeling approach used in the preliminary design of concrete gravity dams, a pseudo-dynamic testing method was devised for the seismic testing of a concrete gravity dam section. The test specimen was a 1/75 scaled section of the 120-m-high monolith of the Melen Dam, one of the highest concrete gravity dams to be built in Turkey. The single degree of freedom idealization of the dam section was validated in the first stage of the study using numerical simu...
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Seismic testing of a scaled roller-compacted-concrete gravity dam
Gharibdoust, Ali; Binici, Barış; Department of Civil Engineering (2016)
Within the last half-century, seismic response analysis of concrete gravity dams has been extensively studied. Studies reveal that two types of failure modes prevail in the form of dam body cracking or base slide. The literature lacks the conditions that clearly differentiate the two failure types. In this context a state of the art single degree of freedom pseudo-dynamic testing was developed to assess the gravity dam response on smooth foundation interface. Three different hazard levels of earthquake name...
Seismic Performance Evaluation of Concrete Gravity Dams by Using Pseudo Dynamic Testing and Simulations
Aldemir, Alper; Binici, Barış (null; 2017-11-24)
Dams are one of the mostimportantinfrastructure components servingfor water storage and energyproduction.Experimental studies on the seismic response of concrete gravity dams are scarce due to the complications regarding thelargescaleof dams and their interaction with the reservoir. This study presents the results of recent novel pseudo-dynamic dam tests (PSD) along with the nonlinear finite element simulations of the specimens. The test specimens were 1/75 scaled version of the highest ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Akpinar, B. Binici, and Y. Arıcı, “Earthquake stresses and effective damping in concrete gravity dams,”
EARTHQUAKES AND STRUCTURES
, pp. 251–266, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46568.