Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Automatic Semantic Content Extraction in Videos Using a Fuzzy Ontology and Rule-Based Model
Date
2013-01-01
Author
Yildirim, Yakup
Yazıcı, Adnan
Yilmaz, Turgay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
Recent increase in the use of video-based applications has revealed the need for extracting the content in videos. Raw data and low-level features alone are not sufficient to fulfill the user's needs; that is, a deeper understanding of the content at the semantic level is required. Currently, manual techniques, which are inefficient, subjective and costly in time and limit the querying capabilities, are being used to bridge the gap between low-level representative features and high-level semantic content. Here, we propose a semantic content extraction system that allows the user to query and retrieve objects, events, and concepts that are extracted automatically. We introduce an ontology-based fuzzy video semantic content model that uses spatial/temporal relations in event and concept definitions. This metaontology definition provides a wide-domain applicable rule construction standard that allows the user to construct an ontology for a given domain. In addition to domain ontologies, we use additional rule definitions (without using ontology) to lower spatial relation computation cost and to be able to define some complex situations more effectively. The proposed framework has been fully implemented and tested on three different domains. We have obtained satisfactory precision and recall rates for object, event and concept extraction.
Subject Keywords
Semantic content extraction
,
Video content modeling
,
Fuzziness
,
Ontology
URI
https://hdl.handle.net/11511/46709
Journal
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
DOI
https://doi.org/10.1109/tkde.2011.189
Collections
Department of Computer Engineering, Article