Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning hall probe microscopy using a bismuth micro-hall probe
Download
index.pdf
Date
2001-05-15
Author
SANDHU, ADARSH
MASUDA, HİROSHİ
Oral, Ahmet
BENDİNG, SİMON J
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
A bismuth micro-Hall probe sensor with an integrated scanning tunnelling microscope tip was incorporated into a room temperature scanning Hall probe microscope system and successfully used for the direct magnetic imaging of microscopic domains of low coercivity perpendicular garnet thin films and demagnetized strontium ferrite permanent magnets. At a driving current of 800 muA, the Hall coefficient, magnetic field sensitivity and spatial resolution of the Bi probe were 3.3 x 10(-4) Omega /G, 0.38 G/root Hz and similar to 2.8 mum, respectively. The room temperature magnetic field sensitivity of the Bi probe was comparable to that of a semiconducting 1.2 mum GaAs/AlGaAs heterostructure micro-Hall probe, which exhibited a value of 0.41 G/root Hz at a maximum driving current of 2 muA.
Subject Keywords
General Engineering
,
General Physics and Astronomy
URI
https://hdl.handle.net/11511/46732
Journal
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS
DOI
https://doi.org/10.1143/jjap.40.l524
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Room temperature sub-micron magnetic imaging by scanning Hall probe microscopy
SANDHU, ADARSH; MASUDA, HİROSHİ; Oral, Ahmet; BENDİNG, SİMON J (IOP Publishing, 2001-06-01)
An ultra-high sensitive room temperature scanning Hall probe microscope (RT-SHPM) system incorporating a GaAs/AlGaAs micro-Hall probe was used for the direct magnetic imaging of localized magnetic field fluctuations in very close proximity to the surface of ferromagnetic materials. The active area, Hall coefficient and field sensitivity of the Hall probe were 0.8 mum x 0.8 mum, 0.3 Omega /G and 0.04G/root Hz, respectively. The use of a semiconducting Hall probe sensor enabled measurements in the presence of...
Interfacial and structural properties of sputtered HfO2 layers
AYGÜN ÖZYÜZER, GÜLNUR; Yıldız, İlker (AIP Publishing, 2009-07-01)
Magnetron sputtered HfO2 layers formed on a heated Si substrate were studied by spectroscopic ellipsometer (SE), x-ray diffraction (XRD), Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiOx suboxide layer at the HfO2/Si interface is unavoidable. The HfO2 thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O-2/Ar gas ratio during sputtering, sputtering time, ...
Spectroscopic study and numerical simulation of low-pressure radio-frequency capacitive discharge with argon downstream
Tanisli, Murat; Rafatov, İsmail; Sahin, Neslihan; Mertadam, Sercan; Demir, Suleyman (Canadian Science Publishing, 2017-02-01)
In this study, the characteristic properties and plasma parameters of capacitive radio frequency (RF) argon (Ar) discharge and supplementary discharge at low pressure are investigated with optical emission spectroscopy (OES). The wavelengths of spectral lines from OES are obtained between 650-900 nm. Using OES lines and related experimental data, the electron temperatures for different RF power, flow, and measurement periods are determined. Eventually, the properties of plasma including the electron tempera...
Photovoltaic Effect and Space Charge Limited Current Analysis in TlGaTe2 Crystals
QASRAWI, ATEF FAYEZ HASAN; Yaseen, T. R.; Eghbariy, B.; Hasanlı, Nızamı (Institute of Physics, Polish Academy of Sciences, 2012-07-01)
Anisotropic space charge limited current density analysis and photovoltaic effect in TlGaTe2 single crystals has been investigated. It is shown that, above 330 K, the crystal exhibits intrinsic and extrinsic type of conductivity along (c-axis) and perpendicular (a-axis) to the crystal's axis, respectively. The current density (J) is found to be space charge limited. It is proportional to the square and three halves power of voltage (V) along the a- and c-axis, respectively. Along the a-axis and at sufficien...
Towards Understanding the Origin of Cosmic-Ray Electrons
Aguilar, M.; et. al. (American Physical Society (APS), 2019-03-13)
Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1 x 10(6) electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1(-5.2)(+5.4) GeV compared to the lower energy trends, but the nature of this excess is different from the posit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. SANDHU, H. MASUDA, A. Oral, and S. J. BENDİNG, “Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning hall probe microscopy using a bismuth micro-hall probe,”
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS
, pp. 0–0, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46732.