Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Path Following with An Underactuated Self-Balancing Spherical-Wheel Mobile Robot
Date
2015-07-31
Author
Inal, Ali Nail
Morgul, Omer
Saranlı, Uluç
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
Reactive methods for motion planning offer robustness advantages in the presence of large disturbances for robotic systems. Unfortunately, it is difficult to generalize these reactive methods to underactuated systems and existing research predominantly focuses on solutions based on the high-gain tracking of dynamically feasible trajectories. Self-balancing mobile robots with spherical wheels, BallBot platforms, are rich examples of such underactuated mechanisms where motion planning has traditionally been done through trajectory tracking on actuated system states with little explicit feedback on external states that are not directly controlled. In this paper, we propose a reactive path-following controller for external states of such platforms, eliminating the need to follow time-parameterized state trajectories. We first define the path-following problem in general, and present how it can be realized through a parallel composition of existing, two-dimensional controllers for the BallBot morphology. We then show in simulation how this idea can be used to achieve asymptotic convergence to a linear path with a constant forward velocity. We also show how the basic idea can be generalized to more complex path shapes such as circles, towards an eventual deployment in a more complete motion planning framework based on sequential composition.
Subject Keywords
Trajectory
,
Solid modeling
,
Planning
,
Attitude control
,
Three-dimensional displays
,
Robots
,
Torque
URI
https://hdl.handle.net/11511/46754
DOI
https://doi.org/10.1109/icar.2015.7251455
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels
Özdemir, Oğuz; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-12-27)
This thesis proposes and analyzes a motion planning and control schema for unmanned surface vehicles that fuses sampling-based approaches’ probabilistic completeness with closed-loop approaches’ robustness. The Proposed schema is based on the sequential composition of elliptical funnels, and it consists of two stages: tree generation and motion control. For validation of the approach, we carried out experiments using both simulation and physical setup besides the mathematical analysis. In order to have a co...
Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Baghaee, Sajjad; Uysal, Elif; Külah, Haluk (2016-10-01)
This paper presents a battery-less wireless sensor network (WSN) equipped with electromagnetic (EM) energy harvesters and sensor nodes with adjustable time-interval based on stored the energy. A wearable EM energy harvesting system is developed and optimized to power-up a typical wireless sensor mote from body motion. This is realized through characterization of the body motion and design of a compact EM energy harvester according to vibration frequencies generated during human running and walking. The harv...
MPC-Graph: Nonlinear feedback motion planning using sparse sampling based neighborhood graph
Atasoy, Simay; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-1)
Robust and safe feedback motion planning and navigation is a critical task for autonomous mobile robotic systems considering the highly dynamic and uncertain nature scenarios of modern applications. For these reasons motion planning and navigation algorithms that have deep roots in feedback control theory has been at the center stage of this domain recently. However, the vast majority of such policies still rely on the idea that a motion planner first generates a set of open-loop possibly time-dependent tra...
Adaptive decentralized control of interconnected systems
Sezer, ME; Altunel, H (2004-08-01)
This paper presents a decentralized adaptive stabilization scheme for a class of interconnected systems using high-gain adaptive controllers. The nominal subsystems are assumed to satisfy some mild conditions required by standard adaptive control schemes, and the interconnections certain structural conditions. The decentralized controllers are high-gain dynamic systems operating on local outputs to generate local control inputs. Both continuous-time and sampled-data controllers are considered. The idea behi...
Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control
Pouya, Soha; Aydın Göl, Ebru; Moeckel, Rico; Ijspeert, Auke Jan (2011-01-01)
This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. N. Inal, O. Morgul, and U. Saranlı, “Path Following with An Underactuated Self-Balancing Spherical-Wheel Mobile Robot,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46754.