Adaptive decentralized control of interconnected systems

2004-08-01
Sezer, ME
Altunel, H
This paper presents a decentralized adaptive stabilization scheme for a class of interconnected systems using high-gain adaptive controllers. The nominal subsystems are assumed to satisfy some mild conditions required by standard adaptive control schemes, and the interconnections certain structural conditions. The decentralized controllers are high-gain dynamic systems operating on local outputs to generate local control inputs. Both continuous-time and sampled-data controllers are considered. The idea behind the design of continuous-time controllers is the small-gain theorem. The sampled-data controllers are discrete versions of the continuous-time controllers. where local sampling frequencies of the controllers also serve as their gains. The controllers are synchronized by a careful choice of their sampling frequencies. In order to guarantee closed-loop stability when the interconnection bounds are unknown, controller gains are increased, using Simple centralized adaptation rule. to sufficiently high values as required by the strength of interconnections. The results are illustrated by a practical example.
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS

Suggestions

Hierarchical multitasking control of discrete event systems: Computation of projections and maximal permissiveness
Schmidt, Klaus Verner; Cury, José E.r. (null; 2010-12-01)
This paper extends previous results on the hierarchical and decentralized control of multitasking discrete event systems (MTDES). Colored observers, a generalization of the observer property, together with local control consistency, allow to derive sufficient conditions for synthesizing modular and hierarchical control that are both strongly nonblocking (SNB) and maximally permissive. A polynomial procedure to verify if a projection fulfills the above properties is proposed and in the case they fail for a g...
ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS
BODUR, M; SEZER, ME (Informa UK Limited, 1993-09-01)
An adaptive self-tuning control scheme is developed for end-point position control of flexible manipulators. The proposed scheme has three characteristics. First, it is based on a dynamic model of a flexible manipulator described in cartesian coordinates, which eliminates the burden and inaccuracy of translating a desired end-point trajectory to joint coordinates using inverse kinematic relations. Second, the effect of flexibility is included in the dynamic model by approximating flexible links with a numbe...
Applied supervisory control for a flexible manufacturing system
Moor, Thomas; Schmidt, Klaus Verner; Perk, Sebastian (2010-12-01)
This paper presents a case study in the design and implementation of a discrete event system (DES) of real-world complexity. Our DES plant is a flexible manufacturing system (FMS) laboratory model that consists of 29 interacting components and is controlled via 107 digital signals. Regarding controller design, we apply a hierarchical and decentralised synthesis method from earlier work in order to achieve nonblocking and safe closed-loop behaviour. Regarding implementation, we discuss how digital signals tr...
Maximally Permissive Hierarchical Control of Decentralized Discrete Event Systems
SCHMİDT, KLAUS WERNER; Schmidt, Klaus Verner (2011-04-01)
The subject of this paper is the synthesis of natural projections that serve as nonblocking and maximally permissive abstractions for the hierarchical and decentralized control of large-scale discrete event systems. To this end, existing concepts for nonblocking abstractions such as natural observers and marked string accepting (msa)-observers are extended by local control consistency (LCC) as a novel sufficient condition for maximal permissiveness. Furthermore, it is shown that, similar to the natural obse...
Robustness Adaptive Control For a Permanent Magnet Synchronous Motor
Rebouh, S.; Kaddouri, A.; Abdessemed, R.; Haddoun, A. (2011-09-10)
This paper presents a vector control permanent magnet synchronous motor drive using backstepping control design. Backstopping control is proposed for replacing the existing PI controller to obtain high performance motion control systems for the speed control loop. Stability analysis based on Lyapunov theory is also performed to guarantee the convergence of the speed tracking error from all possible initials conditions. Computer simulations have been carried out in order to validate the effectiveness of the ...
Citation Formats
M. Sezer and H. Altunel, “Adaptive decentralized control of interconnected systems,” DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, pp. 521–536, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66035.