Proportional Fair Resource Allocation on an Energy Harvesting Downlink

Download
2013-04-01
Tekbiyik, Neyre
GİRİCİ, TOLGA
Uysal, Elif
Leblebicioğlu, Mehmet Kemal
This paper considers the allocation of time slots in a frame, as well as power and rate to multiple receivers on an energy harvesting downlink. Energy arrival times that will occur within the frame are known at the beginning of the frame. The goal is to optimize throughput in a proportionally fair way, taking into account the inherent differences of channel quality among users. Analysis of structural characteristics of the problem reveals that it can be formulated as a biconvex optimization problem, and that it has multiple optima. Due to the biconvex nature of the problem, a Block Coordinate Descent (BCD) based optimization algorithm that converges to an optimal solution is presented. However, finding the optimal allocation with BCD entails a computational complexity that increases sharply in terms of the number of users or slots. Therefore, certain structural characteristics of the optimal power-time allocation policy are derived. Building on those, two simple and computationally scalable heuristics, PTF and ProNTO are proposed. Simulation results suggest that PTF and ProNTO can closely track the performance of BCD which achieves a good balance between total throughput and fairness.
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

Suggestions

Optimum geometry for torque ripple minimization of switched reluctance motors
Sahin, F; Ertan, HB; Leblebicioğlu, Mehmet Kemal (Emerald, 1995-12-01)
This paper briefly describes an approach to determine the optimum magnetic circuit parameters to minimize low speed torque ripple for switched reluctance (SR) motors. For prediction of the torque ripple, normalized data obtained from field solution and a neural network approach is used. Comparison of experimental results with computations illustrates the accuracy of the method. The optimization method is briefly described and some results are presented.
Power-Efficient Hybrid Energy Harvesting System for Harnessing Ambient Vibrations
Chamanian, Salar; Çiftci, Berkay; Ulusan, Hasan; Muhtaroglu, Ali; Külah, Haluk (Institute of Electrical and Electronics Engineers (IEEE), 2019-07-01)
This paper presents an efficient hybrid energy harvesting interface to synergistically scavenge power from electromagnetic (EM) and piezoelectric (PE) sources, and drive a single load. The EM harvester output is rectified through a self-powered active doubler structure, and stored on a storage capacitor. The stored energy is then transferred to the PE harvester to increase the damping force and charge extraction. The total synergistically extracted power from both harvesters is more than the power obtained ...
Fully Integrated Autonomous Interface With Maximum Power Point Tracking for Energy Harvesting TEGs With High Power Capacity
Tabrizi, Hamed Osouli; Jayaweera, Herath M. P. C.; Muhtaroglu, Ali (Institute of Electrical and Electronics Engineers (IEEE), 2020-05-01)
In this article, a novel fully autonomous and integrated power management interface circuit is introduced for energy harvesting using thermoelectric generators (TEGs) to supply power to Internet of Thing nodes. The circuit consists of a self-starting dc & x2013;dc converter based on a dual-phase charge pump with LC-tank oscillator, a digital MPPT unit, and a 1-V LDO regulator. The novel maximum power point tracking (MPPT) algorithm avoids open-circuit state, and accommodates varying input power and ultra-lo...
An Upper Bound for Limited Rate Feedback MIMO Capacity
Güvensen, Gökhan Muzaffer; Yılmaz, Ali Özgür (Institute of Electrical and Electronics Engineers (IEEE), 2009-06-01)
We develop a technique to upper bound the point-to-point MIMO limited rate feedback (LRF) capacity under a wide class of vector quantization schemes. The upper bound turns out to be tight and can also be used to obtain an absolute upper bound by using a bounding distribution for Grassmannian beamforming. The bounding technique can be applied to other problems requiring the exact evaluation of the expected value of matrix determinant.
Hybrid connection of RF MEMS and SMT components in an impedance tuner
Unlu, Mehmet; Topalli, Kagan; Atasoy, Halil Ibrahim; Demir, Şimşek; Aydın Çivi, Hatice Özlem; Akın, Tayfun (Elsevier BV, 2010-01-01)
This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance tuner which employs a high number of MEMS switches is selected to demonstrate the feasibility of the connections. In the hybrid tuner, MEMS switches are actuated with DC bias signals, where SMT resistors de-couple RF from the DC lines. The hybrid tuner is realized in two steps, where the MEMS impedance tuner is fabricated on a glass ...
Citation Formats
N. Tekbiyik, T. GİRİCİ, E. Uysal, and M. K. Leblebicioğlu, “Proportional Fair Resource Allocation on an Energy Harvesting Downlink,” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, pp. 1699–1711, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46767.