Coupled chemomechanics and phase field modeling of failure in electrode materials of Li ion batteries

2013-03-22
We propose a canonical finite strain theory for diffusion-mechanics coupling for the intercalation induced stress generation in Li-ion electrode particles. The intrinsic coupling arises from both mechanical pressure gradient-induced diffusion of Li-ion particles and diffusion induced swelling/shrinkage leading to mechanical stresses. In addition, we extend the finite strain theory for diffusion-mechanics coupling to chemomechanical fracture of electrode particles by introducing a nonlocal crack phase field which replaces a sharp crack topology with a smooth diffuse interpolation between the intact and broken states of the material. We employ a semi-implicit Galerkin-type finite element method for the solution of resulting set of differential equations. In addition to the mechanical, chemical and crack phase field, we introduce the pressure as an independent field variable in order to reduce the smoothness requirements on the interpolation functions. We illustrate characteristic features of the proposed model by means of representative initial-boundary value problems.

Suggestions

Electrically charged vortex solutions in Born-Infeld theory with a Chern-Simons term
Çimşit, Mustafa; İpekoğlu, Yusuf; Department of Physics (2003)
In this thesis, we considered electrically charged vortex solutions of Born- Infeld Chern-Simons gauge theory in 2+1 dimensions, with a sixth order charged scalar eld potential. For this purpose, rst Nielsen-Olesen vortex solutions are extensively reviewed. Then, Born-Infeld and Chern-Simons theories are summarized. Finally, vortex solutions are obtained for the Born-Infeld-Higgs system with a Chern-Simons term. These solutions are analyzed numerically, comparing their properties with Nielsen-Olesen vortices.
Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model
Iltan, EO (Springer Science and Business Media LLC, 2005-11-01)
We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10(-22) e cm (10(-20) e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment.
Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model
Iltan, EO (American Physical Society (APS), 2001-07-01)
We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(mu-->e gamma) in the framework of the general two Higgs doubler model. Our prediction is 10(-32) e cm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings )over bar>(D)(N,taue) and )over bar>(D)(N,tau mu). Finally, we present an expression which connects the BR(tau-->mu gamma) and the electric dipole moment of th...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Thermal and optical properties of two molecular potentials
Eshghi, Mahdi; Sever, Ramazan; Ikhdair, Sameer M. (Springer Science and Business Media LLC, 2019-04-01)
We solve the Schrodinger wave equation for the generalized Morse and cusp molecular potential models. In the limit of high temperature we, first, need to calculate the canonical partition function which is basically used to study the behavior of the thermodynamic functions. Based on this, we further calculate the thermodynamic quantities, such as the free energy, the entropy, the mean energy and the specific heat. Their behavior with the temperature has been investigated. In addition, the susceptibility for...
Citation Formats
H. Dal, “Coupled chemomechanics and phase field modeling of failure in electrode materials of Li ion batteries,” 2013, vol. 13, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46794.