Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Coupled chemomechanics and phase field modeling of failure in electrode materials of Li ion batteries
Date
2013-03-22
Author
Dal, Hüsnü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
119
views
0
downloads
Cite This
We propose a canonical finite strain theory for diffusion-mechanics coupling for the intercalation induced stress generation in Li-ion electrode particles. The intrinsic coupling arises from both mechanical pressure gradient-induced diffusion of Li-ion particles and diffusion induced swelling/shrinkage leading to mechanical stresses. In addition, we extend the finite strain theory for diffusion-mechanics coupling to chemomechanical fracture of electrode particles by introducing a nonlocal crack phase field which replaces a sharp crack topology with a smooth diffuse interpolation between the intact and broken states of the material. We employ a semi-implicit Galerkin-type finite element method for the solution of resulting set of differential equations. In addition to the mechanical, chemical and crack phase field, we introduce the pressure as an independent field variable in order to reduce the smoothness requirements on the interpolation functions. We illustrate characteristic features of the proposed model by means of representative initial-boundary value problems.
URI
https://hdl.handle.net/11511/46794
DOI
https://doi.org/10.1002/pamm.201310099
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Electrically charged vortex solutions in Born-Infeld theory with a Chern-Simons term
Çimşit, Mustafa; İpekoğlu, Yusuf; Department of Physics (2003)
In this thesis, we considered electrically charged vortex solutions of Born- Infeld Chern-Simons gauge theory in 2+1 dimensions, with a sixth order charged scalar eld potential. For this purpose, rst Nielsen-Olesen vortex solutions are extensively reviewed. Then, Born-Infeld and Chern-Simons theories are summarized. Finally, vortex solutions are obtained for the Born-Infeld-Higgs system with a Chern-Simons term. These solutions are analyzed numerically, comparing their properties with Nielsen-Olesen vortices.
Electric dipole moments of charged leptons in the split fermion scenario in the two Higgs doublet model
Iltan, EO (Springer Science and Business Media LLC, 2005-11-01)
We predict the charged lepton electric dipole moments in the split fermion scenario in the framework of the two Higgs doublet model. We observe that the numerical value of the muon (tau) electric dipole moment is of the order of the magnitude of 10(-22) e cm (10(-20) e cm) and there is an enhancement in the case of two extra dimensions, especially for the tau lepton electric dipole moment.
Electric dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs doublet model
Iltan, EO (American Physical Society (APS), 2001-07-01)
We calculate the electric dipole moment of the electron using the experimental result of the muon electric dipole moment and upper limit of the BR(mu-->e gamma) in the framework of the general two Higgs doubler model. Our prediction is 10(-32) e cm, which lies in the experimental current limits. Further, we obtain constraints for the Yukawa couplings )over bar>(D)(N,taue) and )over bar>(D)(N,tau mu). Finally, we present an expression which connects the BR(tau-->mu gamma) and the electric dipole moment of th...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Thermal and optical properties of two molecular potentials
Eshghi, Mahdi; Sever, Ramazan; Ikhdair, Sameer M. (Springer Science and Business Media LLC, 2019-04-01)
We solve the Schrodinger wave equation for the generalized Morse and cusp molecular potential models. In the limit of high temperature we, first, need to calculate the canonical partition function which is basically used to study the behavior of the thermodynamic functions. Based on this, we further calculate the thermodynamic quantities, such as the free energy, the entropy, the mean energy and the specific heat. Their behavior with the temperature has been investigated. In addition, the susceptibility for...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Dal, “Coupled chemomechanics and phase field modeling of failure in electrode materials of Li ion batteries,” 2013, vol. 13, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46794.