Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Benzyl substituted benzotriazole containing conjugated polymers: Effect of position of the substituent on electrochromic properties
Date
2010-12-01
Author
Yigitsoy, Basak
Karim, S. M. Abdul
Balan, Abidin
Baran, Derya
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
277
views
0
downloads
Cite This
New classes of EDOT coupled-benzotriazole bearing pi-conjugated monomers containing benzyl units on electron-withdrawing benzotriazole moiety were synthesized. The effect of structural differences on electrochemical and optoelectronic properties of the resulting polymers (PBBTES and PBBTEA) was investigated. The results showed that the insertion of benzyl substituent to benzotriazole from different positions changes the electronic structure of polymer which results in completely different electrochemical and optical properties. PBBTES has a very low oxidation potential (0.13V) compared to the oxidation potential of PBBTEA (0.98 V). Spectroelectrochemical analyses revealed that PBBTES is blue in its neutral state with a pi-pi* transition at 625 nm whereas PBBTEA is orange in its neutral state with a pi-pi* transition at 477 nm. The band gap (E(g)) values for PBBTES and PBBTEA were calculated as 1.48 eV and 1.57 eV, respectively. PBBTEA can be switched between blue neutral state and light blue oxidized state while PBBTEA reveals orange color at the neutral state and gray color at oxidized state.
Subject Keywords
Mechanical Engineering
,
Materials Chemistry
,
Mechanics of Materials
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
,
Metals and Alloys
URI
https://hdl.handle.net/11511/46796
Journal
SYNTHETIC METALS
DOI
https://doi.org/10.1016/j.synthmet.2010.10.001
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
ELECTRICALLY CONDUCTIVE POLY(METHYL METHACRYLATE-G-PYRROLE) VIA CHEMICAL OXIDATIVE POLYMERIZATION
STANKE, D; HALLENSLEBEN, ML; Toppare, Levent Kamil (Elsevier BV, 1993-03-22)
Methyl methacrylate (MMA) and 2-bromoethyl methacrylate (BEMA) were copolymerized and the reactivity ratios of the monomers were determined. A pyrrole moiety was introduced into the copolymer via polymer analogous reaction and grafting between this molecule and pyrrole was achieved by chemical oxidative polymerization of pyrrole with iron-(III) chloride. Conductivities of 10(-2) S/cm were measured.
POLY(3-PHENYL AZOPYRROLE)S - A NEW CLASS OF CONDUCTING POLYMERS IN THE POLY(PYRROLE) SERIES
VOIGT, M; HALLENSLEBEN, ML; Toppare, Levent Kamil (Elsevier BV, 1993-03-22)
Several monosubstituted 3-arylazopyrrole derivatives were synthesized for the first time. The oxidation potentials were correlated to the Hammett constants of the substituents. Cyclic voltammetry studies revealed several interesting, features concerning the new compounds. Electrochemical homopolymerizations as well as copolymerization with pyrrole were performed.
Electrochemical preparation and characterization of carbon fiber reinforced poly (dimethyl siloxane)/polythiophene composites: electrical, thermal and mechanical properties
Sankir, M; Kucukyavuz, S; Kucukyavuz, Z (Elsevier BV, 2002-05-10)
A series of polydimethylsiloxane (PDMS)/polythiophene (Pth)/carbon fiber (CF) composites was synthesized by electrochemical polymerization using tetrabutylammoniumtetrafluoroborate (TBAFB) as supporting electrolyte and acetonitrile as solvent. Composites were characterized by TGA, SEM, and mechanical tests and conductivity measurements. Conductivities of composites were in the range of 25 S/cm. SEM studies show that CF were coated by PDMS/Pth matrix and well oriented in the matrix. In mechanical tests it ha...
Dual-type electrochromic devices based on conducting copolymers of thiophene-functionalized monomers
BULUT, U; Çırpan, Ali (Elsevier BV, 2005-01-03)
Dual polymer electrochromic devices (ECDs) composed of electrochemically deposited conducting copolymers of thiophene-functionalized monomers, 2-[(3-thienylcarbonyl)oxy] ethyl 3-thiophene carboxylate (TOET), 2,3-bis-[(3-thienylcarbonyl)oxy]propyl 3-thiophene carboxylate (TOPT), and 3-[(3-thienylcarbonyl)oxy]-2,2-bis-[(3-thienylcarbonyl)oxy]propyl 3-thiophene carboxylate (TOTPT), and polyethylene dioxythiophene (PEDOT) as the counter part were constructed with tetrabutylammonium tetrafluoroborate (TBAFB) dop...
Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties
SACAN, L; Çırpan, Ali; CAMURLU, P; Toppare, Levent Kamil (Elsevier BV, 2006-02-01)
The homopolymer and copolymer of succinic acid bis-(2-thiophen-3-yl-ethyl)ester with thiophene were achieved via constant potential electrolysis in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, and acetonitrile/borontrifluoride ethylether (ACN/BFEE) (10:2 v/v) solvent mixture. The characterizations of both homopolymer (PSATE) and copolymer P(SATE-co-Th) were achieved by various techniques including cyclic voltammetry (CV), Fr-IR, scanning electron microscopy (SEM) and U...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Yigitsoy, S. M. A. Karim, A. Balan, D. Baran, and L. K. Toppare, “Benzyl substituted benzotriazole containing conjugated polymers: Effect of position of the substituent on electrochromic properties,”
SYNTHETIC METALS
, pp. 2534–2539, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46796.