Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Conducting polymer composites of polypyrrole and polyindene
Download
index.pdf
Date
1996-08-30
Author
Bozkurt, A
Akbulut, Ural
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
312
views
0
downloads
Cite This
Polypyrrole-polyindene composites were prepared via electrochemical methods. Two different approaches were utilized. In the first, the electro-initiated polymerization of indene on a platinum electrode was achieved at 2.0 V versus Ag/Ag+ in acetonitrile. Then the polyindene-coated electrode was used for the electrochemical polymerization of pyrrole at 1.0 V versus Ag/Ag+. In the second case, electrochemical coating of platinum electrode with polypyrrole at 1.0 V versus Ag/Ag+ was carried out and indene was polymerized on the conducting polymer at 2.0 V versus Ag/Ag+ in acetonitrile medium. The characterizations of these composites were done by FT-IR, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). Electrical conductivities were evaluated by two-probe and four-probe methods.
Subject Keywords
Conducting composites
,
Polypyrrole
,
Polyindene
,
Electrochemical synthesis
URI
https://hdl.handle.net/11511/47166
Journal
SYNTHETIC METALS
DOI
https://doi.org/10.1016/s0379-6779(97)80007-0
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Conducting polymer composites of polypyrrole and polyimide
Selampinar, F; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
A conducting composite of polypyrrole with a polyimide as the insulating matrix polymer was prepared via electrochemical methods. The characterization of the composite was done by FTIR, SEM and TGA studies. Conductivity and solubility studies together with spectroscopic methods reveal that a chemical interaction between the two polymers exists.
Thermal degradation of polythiophene-natural rubber and polythiophene-synthetic rubber conducting polymer composites
Hacaloğlu, Jale; Akbulut, Ural; Toppare, Levent Kamil (1997-01-01)
Thermal degradation of conducting polymer composites of polythiophene and rubbers was studied by direct and indirect pyrolysis mass spectrometry techniques. The samples were prepared by electrooxidation of polythiophene using natural rubber or synthetic rubber as the insulating matrix. Presence of decomposition products which were not observed during pyrolysis of pure polythiophene and rubbers, and disappearance of rubber-based pyrolysis mass peaks, together with changes in thermal stability and behaviour, ...
Interfacial reaction kinetics and microstructural evolution of C/SiC composites to metal joints
Saltık, Simge; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2021-9-09)
In the present study, joining of two dissimilar materials namely C/SiC composites and Ti6Al4V alloys by brazing using Ag-Cu based brazing filler alloys have been investigated. The effect of active Ti element content, additive particle size/amount in the filler alloy together with the reinforcement structure, material properties of the C/SiC composite on the interface evolution mechanism and resulting mechanical performance of the brazed joints have been examined. Additionally, apart from the brazing studies...
Electronic properties of polypyrrole polyindene composite metal junctions
Bozkurt, A; Ercelebi, C; Toppare, Levent Kamil (1997-04-15)
Junction properties between conducting polymer composites of polypyrrole/polyindene (PPy/PIn) with different conductivities and metals like Pt, Au, Al and In have been investigated. Rectifying junctions were observed for low work function metals, In and Al; however, high work function metals, Pt and Au, were observed to form ohmic contacts to PPy/PIn composite in the sandwich geometry. The rectifying behavior of the metal/composite/Pt junctions improved when the conductivity of the composite was decreased f...
Characterization of conducting copolymer of pyrrole via pyrolysis mass spectrometry
Levent, Anil; Hacaloğlu, Jale; Toppare, Levent Kamil (2008-03-01)
In this work, structural and thermal characterization of BF4- doped copolymer of pyrrole (PPy) with 2-methylbutyl-2-(3-thienyl)acetate prepared by electrochemical polymerization were performed via a pyrolysis mass spectrometry technique. The pyrolysis mass spectrometry data of the copolymer PPy/PMBTA, and the homopolymers; polypyrrole, PPy, and poly(2-methylbutyl-2-(3-thienyl)acetate), PMBTA were analyzed and compared. It has been determined that when the electrochemical polymerization of pyrrole was achiev...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Bozkurt, U. Akbulut, and L. K. Toppare, “Conducting polymer composites of polypyrrole and polyindene,”
SYNTHETIC METALS
, pp. 41–46, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47166.