Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities
Date
2020-07-01
Author
Johnson, Evan
Tarı, İlker
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
A method is described to find the effective thermal conductivity due to radiation (k(rad)) for groups of particles at packed and less than packed states. Unlike most previous studies, the method does not rely on the assumption of a unit cell or absorption and scattering coefficients to derive k(rad). In this method, radiation is modeled with a 3D Monte Carlo ray tracing code, steady state particle temperatures are found with a particle-particle heat exchange simulation, and k(rad) is found with a comparison to heat conduction in an isotropic solid of the same geometry. This leads to the dimensionless Exchange Factor (F-E), allowing k(rad) to be calculated at any temperature and particle radius. The key result is a model for F-E over the entire range of emissivities from 0.3 to 1 and solid fractions from 0.25 to the fully packed state of 0.64. F-E results are compared to previous models, with agreement shown in some cases but a large disagreement found for low solid fractions. The k(rad) results are combined with the Zehner and Schlunder model for solid and fluid conduction, providing an equation for the full effective thermal conductivity.
Subject Keywords
Spectroscopy
,
Atomic and Molecular Physics, and Optics
,
Radiation
URI
https://hdl.handle.net/11511/47182
Journal
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
DOI
https://doi.org/10.1016/j.jqsrt.2020.107014
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Performance of banded SLW-1 in presence of non-gray walls and particles in fluidized bed combustors
Yaşar, Mehmet Soner; Selçuk, Nevin; Külah, Görkem (Elsevier BV, 2020-12-01)
In this study, banded one gas spectral line-based weighted sum of gray gases (banded SLW-1) model is coupled with a 3-D radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for freeboard of METU 0.3 MWt atmospheric bubbling fluidized bed combustion (ABFBC) test rig containing non-gray gas, non-gray particle mixture bounded by non-gray walls. Spectral parameters of banded SLW-1 are estimated by the approach based on two emissivities calculated at two different path length...
Pressure dependence of the Raman frequencies for the translational mode in ammonia solid II
Yurtseven, Hasan Hamit (Elsevier BV, 2006-12-01)
We study here the translational mode of the ammonia solid II near the melting point by calculating its Raman frequencies as a function of pressure for the fixed temperatures of 230.4, 263.4 and 297.5 K. We perform this calculation of the Raman frequencies using the volume data by means of our Gruneisen relation. The Raman frequency shifts as the volume changes with the pressure, exhibit an anomalous behaviour near the melting point in the ammonia solid II.
A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons
Pekoz, Rengin; Erkoç, Şakir (Elsevier BV, 2009-12-01)
The energetics and the electronic properties of nitrogen- and boron-doped graphene nanoribbons with zigzag edges have been investigated using density functional theory calculations. For the optimized geometry configurations, vibrational frequency analysis and wavefunction stability tests have been carried out. Different doping site optimizations for a model nanoribbon have been performed and formation energy values of these sites revealed that zigzag edgesite for both of the dopants were the most favorable ...
Analysis of the Raman intensities near the phase transitions in ammonium halides
Yurtseven, Hasan Hamit (Elsevier BV, 2008-12-01)
This study concentrates on the temperature dependence of the Raman intensities for the lattice modes in ammonium halides (NH4Cl and NH4Br) close to phase transitions, We predict their intensities using the results of a shell model for the Raman polarizability within the framework of an Ising pseudospin-phonon coupled model.
Spectroscopic measurements of electron temperature and electron density in electron beam plasma generator based on collisional radiative model
Goktas, H.; Demir, A.; Kacar, E.; Hegazy, H.; Turan, Raşit; Oke, G.; Seyhan, A. (Informa UK Limited, 2007-01-01)
The current work describes a spectroscopic method for determining the electron temperature and electron density in an electron beam generator using argon spectral lines based on a collisional radiative model. Neutral and first-ionized Ar lines emitted from the electron beam generator are studied experimentally. A collisional radiative code was developed to simulate the Ar (I) and Ar (II) spectral emission and to compare the results with the experimental data for electron density and temperature determinatio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Johnson, İ. Tarı, and D. K. Baker, “A Monte Carlo method to solve for radiative effective thermal conductivity for particle beds of various solid fractions and emissivities,”
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47182.