A Novel Broadband Multilevel Fast Multipole Algorithm With Incomplete-Leaf Tree Structures for Multiscale Electromagnetic Problems

Download
2016-06-01
Takrimi, Manouchehr
Ergül, Özgür Salih
Erturk, Vakur B.
An efficient and versatile broadband multilevel fast multipole algorithm (MLFMA), which is capable of handling large multiscale electromagnetic problems with a wide dynamic range of mesh sizes, is presented. By invoking a novel concept of incomplete-leaf tree structures, where only the overcrowded boxes are divided into smaller ones for a given population threshold, versatility of using variable-sized boxes is achieved. Consequently, for geometries containing highly overmeshed local regions, the proposed method is always more efficient than the conventional MLFMA for the same accuracy, while it is always more accurate if the efficiency is comparable. Furthermore, in such a population-based clustering scenario, the error is controllable regardless of the number of levels. Several canonical examples are provided to demonstrate the superior efficiency and accuracy of the proposed algorithm in comparison with the conventional MLFMA.
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

Suggestions

A Broadband Multilevel Fast Multipole Algorithm with Incomplete-Leaf Tree Structures for Multiscale Electromagnetic Problems
Takrimi, Manouchehr; Ergül, Özgür Salih; Erturk, Vakur B. (2016-04-15)
An efficient, broadband, and accurate multilevel fast multipole algorithm (MLFMA) is proposed to solve a wide range of multiscale electromagnetic problems with orders of magnitude differences in the mesh sizes. Given a maximum RWG population threshold, only overcrowded boxes are recursively bisected into smaller ones, which leads to novel incomplete-leaf tree structures. Simulations reveal that, for surface discretizations possessing highly overmeshed local regions, the proposed method presents a more effic...
Broadband Multilevel Fast Multipole Algorithm Based on an Approximate Diagonalization of the Green's Function
Ergül, Özgür Salih (2015-07-01)
We present a broadband multilevel fast multipole algorithm (MLFMA) for fast and efficient solutions of three-dimensional multiscale problems involving large objects with dense discretizations. The proposed solver is based on the approximate diagonalization of the Green's function using scaled spherical and plane waves, leading to stable interaction computations for arbitrarily short distances in terms of wavelength. Despite contradictory requirements on the scaling factor that limit the accuracy of the diag...
A Broadband Electromagnetic Solver Based on Multiscale MLFMA and Hybrid Integral Equations
Karaosmanoglu, Bariscan; Tonga, Muhammed; Ergül, Özgür Salih (2018-11-02)
We present a fully broadband solver for fast and accurate solutions of multiscale electromagnetic problems involving both coarse and fine details. The implementation is based on a multiscale multilevel fast multipole algorithm that employs low-frequency and high-frequency expansions at suitable levels of incomplete tree structures. In addition, hybrid integral equations are used to properly formulate scattering and radiation problems in the frequency domain. Numerical results demonstrate the superior accura...
Broadband solutions of potential integral equations with NSPWMLFMA
Khalichi, Bahram; Ergül, Özgür Salih; Ertürk, Vakur B. (Institute of Electrical and Electronics Engineers (IEEE), 2019-06)
In this communication, a mixed-form multilevel fast multipole algorithm (MLFMA) is combined with the recently introduced potential integral equations (PIEs), also called as the A-phi system, to obtain an efficient and accurate broadband solver that can be used for the solution of electromagnetic scattering from perfectly conducting surfaces over a wide frequency range including low frequencies. The mixed-form MLFMA uses the nondirective stable planewave MLFMA (NSPWMLFMA) at low frequencies and the conventio...
A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks
Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (Institute of Electrical and Electronics Engineers (IEEE), 2015-04-01)
This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control problem where the main objective is to assign each sensor's transmission range such that each has at least k-vertex-disjoint paths to superno...
Citation Formats
M. Takrimi, Ö. S. Ergül, and V. B. Erturk, “A Novel Broadband Multilevel Fast Multipole Algorithm With Incomplete-Leaf Tree Structures for Multiscale Electromagnetic Problems,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, pp. 2445–2456, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47214.