Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model
Date
2007-07-01
Author
Erturk, A.
Budak, E.
Özgüven, Hasan Nevzat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
182
views
0
downloads
Cite This
In this paper, using the analytical model developed by the authors, the effects of certain system design and operational parameters on the tool point FRF, thus on the chatter stability are studied. Important conclusions are derived regarding the selection of the system parameters at the stage of machine tool design and during a practical application in order to increase chatter stability. It is demonstrated that the stability diagram for an application can be modified in a predictable manner in order to maximize the chatter-free material removal rate by selecting favorable system parameters using the analytical model developed. The predictions of the model, which are based cm the methodology proposed in this study, are also experimentally verified.
Subject Keywords
Chatter stability
,
Machine tool dynamics
,
Spindle dynamics
,
Tool point FRF
URI
https://hdl.handle.net/11511/47239
Journal
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
DOI
https://doi.org/10.1016/j.ijmachtools.2006.08.016
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Prediction of frequency response function (FRF) of asymmetric tools from the analytical coupling of spindle and beam models of holder and tool
Özşahin, Orkun (2015-05-01)
The prediction of chatter stability diagrams in milling requires accurate frequency response functions (FRF) at the tool - workpiece contact zone. Traditionally, the most accurate FRFs are best obtained through the experimental modal testing of each tool, which is costly. This paper presents analytical modeling and coupling procedures for spindle-holder-tool assemblies with asymmetric tools. Tools and holders are analytically modeled with continuous Timoshenko beams, while considering variation of the cross...
Analytical modeling of the machine tool spindle dynamics under operational conditions
Özşahin, Orkun; Özgüven, Hasan Nevzat (null; 2012-07-27)
Chatter is an important problem in machining operations, and can be avoided by utilizing stability diagrams which are generated using frequency response functions (FRF) at the tool tip. In general, tool point FRF is obtained experimentally or analytically for the idle state of the machine. However, during high speed cutting operations, gyroscopic effects and changes of contact stiffness and damping at the interfaces as well as the changes in the bearing properties may lead to variations in the tool point FR...
INVESTIGATION AND OPTIMIZATION OF WINGLETS FOR HAWT ROTOR BLADES
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-03-25)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-epsilon Launder-Sharma, k-epsilon Yang-Shih and SST k-omega models are used and tested. The results of the power curve and the pressure distribution at dif...
Investigation and optimization of winglets for hawt rotor blades
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-01-01)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-e Launder-Sharma, k-e Yang-Shih and SST k-ω models are used and tested. The results of the power curve and the pressure distribution at different spanwise ...
STABILITY OF CONTROL FORCES IN REDUNDANT MULTIBODY SYSTEMS
IDER, SK (1996-01-03)
In this paper inverse dynamics of redundant multibody systems using a minimum number of control forces is formulated. It is shown that the control forces and the task accelerations may become noncausal at certain configurations, yielding the dynamical equation set of the system to be singular. For a given set of tasks, each different set of actuators leads to a different system motion and also to different singular configurations. To avoid the singularities in the numerical solution, the dynamical equations...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Erturk, E. Budak, and H. N. Özgüven, “Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model,”
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
, pp. 1401–1409, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47239.