Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dielectrophoresis: Applications and future outlook in point of care
Date
2013-04-01
Author
Demircan, Yagmur
Ozgur, Ebru
Külah, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
115
views
0
downloads
Cite This
Dielectrophoresis (DEP) is a label free, noninvasive, stand alone, rapid, and sensitive particle manipulation and characterization technique. Improvements in micro-electro-mechanical systems technology have enabled the biomedical applications of DEP over the past decades. By this way, integration of DEP into lab-on-a-chip systems has become achievable, creating a potential tool for point-of-care (POC) systems. DEP can be utilized in many different POC applications including early detection and prognosis of various cancer types, diagnosis of infectious diseases, blood cell analysis, and stem cell therapy. However, there are still some challenges to be resolved to have DEP-based devices available in POC market. Today, researchers have focused on these challenges to have this powerful theory as a solution for many POC applications. Here, DEP theory, cell modeling, and most common device structures are introduced briefly. Next, POC applications of DEP theory, such as cell (blood, cancer, stem, and fetal) and microorganism separation, manipulation, and enrichment for diagnosis and prognosis, are explained. Integration of DEP with other detection techniques to have more sensitive systems is summarized. Finally, future outlook for DEP-based systems are discussed with some challenges, which are currently preventing these systems to be a common tool for POC applications, and possible solutions.
Subject Keywords
Clinical Biochemistry
,
Biochemistry
URI
https://hdl.handle.net/11511/47351
Journal
ELECTROPHORESIS
DOI
https://doi.org/10.1002/elps.201200446
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Benzaldehyde lyase from pseudomonas fluorescens biovar i mediated biotransformation for the synthesis of chiral alpha hydroxy ketones
Hoşrik, Birsu Semra; Demir, Ayhan Sıtkı; Department of Biochemistry (2010)
Optically active α-hydroxy ketones are important subunits of many biologically active compounds and indispensable synthons for asymmetric synthesis. Benzaldehyde Lyase from Pseudomonas fluorescens Biovar I is a novel ThDP-dependent enzyme that catalyzes the synthesis of benzoin type chiral α-hydroxy ketones starting from both benzaldehyde and racemic benzoin derivatives. Benzaldehyde Lyase is the first example of enzymes in the literature which leads to a chemical resolution of enantiomers of benzoin deriva...
Cross-Linking of a DOPA-Containing Peptide Ligand into its G Protein-Coupled Receptor
Umanah, George E.; Son, Çağdaş Devrim; Ding, FaXiang; Naider, Fred; Becker, Jeffrey M. (American Chemical Society (ACS), 2009-04-01)
The interaction between a 3,4-dihydroxylphenylalanine (DOPA) labeled analog of the tridecapeptide α-factor (W-H-W-L-Q-L-K-P-G-Q-P-M-Y) and Ste2p, a Saccharomyces cerevisiae model G protein-coupled receptor (GPCR), has been analyzed by periodate-mediated cross-linking. Chemically synthesized α-factor with DOPA substituting for tyrosine at position 13 and biotin tagged onto lysine7 ([Lys7 (BioACA),-Nle12,DOPA13]α-factor; Bio-DOPA-α-factor) was used for crosslinking into Ste2p. The biological activity of Bio-D...
Antioxidant enzyme activities in rat liver tissues of diabetic rats
Sadi, Gökhan; Güray, Tülin; Department of Biochemistry (2004)
Free radicals are the compounds having one or more unpaired electrons in their outer orbital and this unpaired electron make these compounds very reactive. Especially as their concentration increases, they initiate a chain oxidation reaction of lipids, proteins and nucleic acids. The condition, in which the production of free radicals exceeds their elimination or tissue defense mechanism decrease against them or both occur together, is called oxidative stress. In diabetes mellitus which is a glucose metabol...
Activity of Topotecan toward the DNA/Topoisomerase I Complex: A Theoretical Rationalization
Bali, Semiha Keyser; Marıon, Antoıne; Ugur, Ilke; Dikmenli, Ayse Kumru; ÇATAK, ŞARON; AVİYENTE, VİKTORYA (American Chemical Society (ACS), 2018-03-06)
Topotecan (TPT) is a nontoxic anticancer drug characterized by a pH-dependent lactone/carboxyl equilibrium. TPT acts on the covalently bonded DNA/topoisomerase I (DNA/TopoI) complex by intercalating between two DNA bases at the active site. This turns TopoI into a DNA-damaging agent and inhibits supercoil relaxation. Although only the lactone form of the drug is active and effectively inhibits TopoI, both forms have been co-crystallized at the same location within the DNA/TopoI complex. To gain further insi...
Enzyme-catalyzed reductive activation of anticancer drugs ıdarubicin and mitomycin c
Çelik, Haydar; Arınç, Emel; Department of Biochemistry (2008)
Idarubicin (IDA) and mitomycin C (MC) are clinically effective quinone-containing anticancer agents used in the treatment of several human cancers. Quinone-containing anticancer drugs have the potential to undergo bioreduction by oxidoreductases to reactive species, and thereby exert their cytotoxic effects. In the present study, we investigated, for the first time, the potential of IDA, in comparison to MC, to undergo reductive activation by NADPH-cytochrome P450 reductase (P450R), NADH-cytochrome b5 reduc...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Demircan, E. Ozgur, and H. Külah, “Dielectrophoresis: Applications and future outlook in point of care,”
ELECTROPHORESIS
, pp. 1008–1027, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47351.