Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Effect of Fillet Rolling Load on the Fatigue Performance of a Micro-Alloy Steel Diesel Engine Crankshaft
Date
2017-01-01
Author
Cevik, Gul
Gürbüz, Rıza
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
10
views
0
downloads
Fillet rolling process is an effective method used to improve the fatigue performance of crankshafts by hardening the fillet region and inducing compressive residual stresses. This paper summarizes the work conducted to investigate the effect of rolling load on fatigue behaviour of a micro-alloy steel crankshaft used in diesel engine applications. Based on the staircase test methodology, component-scale resonant bending fatigue tests were conducted to obtain stress versus number of cycles curves and to evaluate the fatigue endurance limits of the crankshaft at un-rolled condition and fillet-rolled conditions at three different loads. Test data was analysed by Dixon-Mood method to calculate the endurance limits. Results showed that the endurance limit increased significantly with fillet rolling process in comparison to un-rolled condition. Endurance limit further increased with the increasing rolling load however with a limited extent above which excessive hardening deteriorates the fillet region; that is the workability limit. The outcomes of this study has shed light on the fillet rolling process to select the optimum rolling load for the used design and material conditions.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/47373
DOI
https://doi.org/10.1088/1742-6596/843/1/012044
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar