Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Wideband doa estimation for nonuniform linear arrays with wiener array interpolation
Date
2008-07-23
Author
Yasar, T. Kaya
Tuncer, Temel Engin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
Coherent wideband DOA estimation for non-uniform linear arrays (NLA) is considered. Array interpolation is used for two mappings. In the first mapping, NLA is mapped to a uniform linear array with the same array aperture. In the second mapping covariance matrices for each frequency bin are mapped to a single one at the center frequency for coherent DOA estimation. A Wiener formulation is used for array interpolation where both signal and noise powers are estimated with maximum likelihood method. Different approaches are compared and the advantages of wideband processing versus narrowband processing are outlined. The accuracy of the SNR estimation is high and it is shown that Wiener array interpolation significantly improves the DOA estimation performance in both narrowband and wideband
Subject Keywords
Interpolation
,
Wideband
,
Direction of arrival estimation
,
Covariance matrix
,
Signal to noise ratio
,
Array signal processing
,
Estimation
URI
https://hdl.handle.net/11511/47376
DOI
https://doi.org/10.1109/sam.2008.4606856
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Partly-filled nonuniform linear arrays for DOA estimation in multipath signals
Tuncer, Temel Engin; Friedlander, Benjamin (2007-04-20)
Partly-filled nonuniform linear arrays (PFNLA) are presented and DOA estimation problem for multipath signals is investigated. A new approach is proposed for DOA estimation in nonuniform linear arrays (NLA) based on array interpolation. A Wiener formulation is used to improve the condition number of the mapping matrix as well as the performance for noisy observations. An initial DOA estimate is obtained by using the uniform part of the PFNLA. This initial estimate is used in array interpolation and a new co...
Direction of arrival estimation for nonuniform linear arrays by using array interpolation
Tuncer, Temel Engin; Friedlander, B. (2007-07-03)
[1] A new approach is proposed for DOA estimation in nonuniform linear arrays (NLA) based on array interpolation. A Wiener formulation is presented to improve the condition number of the mapping matrix as well as the performance for noisy observations. Noniterative and iterative methods for DOA estimation are proposed. These methods use an initial DOA which is then significantly improved by the subsequent processing. Partially augmentable nonredundant arrays (PANA) and partly filled NLA (PFNLA) are consider...
Fine resolution frequency estimation from three DFT samples: Case of windowed data
Candan, Çağatay (2015-09-01)
An efficient and low complexity frequency estimation method based on the discrete Fourier transform (DFT) samples is described. The suggested method can operate with an arbitrary window function in the absence or presence of zero-padding. The frequency estimation performance of the suggested method is shown to follow the Cramer-Rao bound closely without any error floor due to estimator bias, even at exceptionally high signal-to-noise-ratio (SNR) values.
Parallelization of noise subspace-based doa estimation algorithms on cpu and gpu
Eray, Hamza; Temizel, Alptekin; Department of Modeling and Simulation (2021-2-11)
Direction-of-Arrival (DOA) estimation is known as an active research area, and it is studied under array signal processing. The algorithms in this area are widely used in various applications such as sonar, search-and-rescue, navigation, and geolocation. However, achieving a real-time system performance is sometimes a challenging task for these algorithms. In this thesis, four noise subspace-based DOA estimation algorithms (PHD, MUSIC, EV, and MN) were considered and implemented in MATLAB, C/C++, and CUDA. ...
Covariance Matrix Estimation of Texture Correlated Compound-Gaussian Vectors for Adaptive Radar Detection
Candan, Çağatay; Pascal, Frederic (2022-01-01)
Covariance matrix estimation of compound-Gaussian vectors with texture-correlation (spatial correlation for the adaptive radar detectors) is examined. The texture parameters are treated as hidden random parameters whose statistical description is given by a Markov chain. States of the chain represent the value of texture coefficient and the transition probabilities establish the correlation in the texture sequence. An Expectation-Maximization (EM) method based covariance matrix estimation solution is given ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. K. Yasar and T. E. Tuncer, “Wideband doa estimation for nonuniform linear arrays with wiener array interpolation,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47376.