Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DESIGN AND SIMULATION OF CIRCULAR ARRAYS OF TRAPEZOIDAL-TOOTH LOG-PERIODIC ANTENNAS VIA GENETIC OPTIMIZATION
Download
index.pdf
Date
2008-01-01
Author
Gurel, L.
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
204
views
52
downloads
Cite This
Circular arrays of log-periodic (LP) antennas are designed and their operational properties are investigated in a sophisticated simulation environment that is based on the recent advances in computational electromagnetics. Due to the complicated structures of the trapezoidal-tooth array elements and the overall array configuration, their analytical treatments are prohibitively difficult. Therefore, the simulation results presented in this paper are essential for their analysis and design. We present the design of a three-element LP array showing broadband characteristics. The directive gain is stabilized in the operation band using optimization by genetic algorithms. We demonstrate that the optimization procedure can also be used to provide beam-steering ability to LP arrays.
Subject Keywords
Dipole Antennas
,
Electromagnetic Scattering
,
Microstrip Antenna
,
Radiation
,
Algorithm
,
Reduction
,
Surfaces
URI
https://hdl.handle.net/11511/47382
Journal
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
DOI
https://doi.org/10.2528/pier08081809
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Analysis and design of cylindrically conformal microstrip antennas
Taşoğlu, Ali Özgür; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2011)
Cylindrically conformal microstrip antennas are investigated. Two different structures, namely proximity coupled and E-shaped microstrip antennas are analyzed and information about the design parameters is obtained by means of parametric study. With these structures, cylindrical arrays, having omnidirectional radiation in the circumferential plane of the cylinder, are designed. Proximity coupled cylindrical arrays operate in the 2.3-2.4 GHz aeronautical telemetry band with approximately 4% bandwidth. On the...
Design of an active microstrip array using a microwave circuit simulator
Demir, S; Toker, Canan; Hizal, A (1997-02-26)
An active antenna array design and simulation of this design with a microwave circuit simulator are presented. This active antenna array is a TV receive only (TVRO) antenna operating at 10 GHz. It is a 8x4 array of rectangular microstrip patch antennas. Eight low noise pHEMTs are placed in the antenna. Passive antenna characteristics are usually obtained by analytical techniques or using special softwares for this purpose. The numerical representation as well as the nonreciprocal nature of the active device...
A Novel Neural Network Method for Direction of Arrival Estimation with Uniform Cylindrical 12-Element Microstrip Patch Array
Caylar, Selcuk; Dural, Guelbin; Leblebicioğlu, Mehmet Kemal (2008-01-01)
In this study a new neural network algorithm is proposed for real time multiple source tracking problem with cylindrical patch antenna array based on a previous v reported Modified Neural Multiple Source Tracking Algorithm(MN-MUST). The proposed algorithm, namely Cylindrical Microstrip Patch Array Modified Neural Multiple Source Tracking Algorithm (CMN-MUST) implements W-MUST algorithm on a cylindrical microsttip patch array structure. CMN-MUST algorithm uses the advantage of directive pattern of microstrip...
Design of Irregularly Shaped Patch Antennas by using the Multiport Network Model
Sener, Goker; Alatan, Lale; Kuzuoğlu, Mustafa (2008-07-11)
The multiport network model (MNM) is an analytical method that is used to analyze microstrip antennas. MNM is based on defining ports along the periphery of the patch and evaluating the impedance matrix corresponding to these ports by using the Greenpsilas function for the cavity under the patch. For regular rectangular, triangular and circular patches, analytical expressions for the Greenpsilas function are available. In the analysis of irregular patches, Greenpsilas functions cannot be calculated explicit...
Design of asymmetric coplanar strip folded dipole antennas /
Karaciğer, Kamil; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
This thesis includes the design, simulation, production and measurement of an asymmetric coplanar strip folded dipole antenna suitable to be used as an element in a linear array operating at S-band (2.7 GHz - 3.3 GHz). In this same manner, its usefulness as an array antenna is also explored in this thesis. This antenna element consists of a microstrip line feed, microstrip to coplanar stripline transition (BALUN) and asymmetric coplanar strip (ACPS) folded dipole. The planar folded dipole can be constructed...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Gurel and Ö. S. Ergül, “DESIGN AND SIMULATION OF CIRCULAR ARRAYS OF TRAPEZOIDAL-TOOTH LOG-PERIODIC ANTENNAS VIA GENETIC OPTIMIZATION,”
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER
, pp. 243–260, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47382.