Fatigue in jointless bridge H-piles under axial load and thermal movements

2018-08-01
Karalar, Memduh
Dicleli, Murat
The seasonal and short-term temperature variations produce cyclic horizontal displacements in the continuous superstructure of jointless bridges and hence in the abutment piles. Thorough study of the available field measurement data for jointless bridges showed that the thermal-induced cyclic flexural strains in steel H-piles (SHPs) at the abutments are composed of large, primary small and secondary small flexural strain cycles. While the SHPs at the abutments of jointless bridges laterally deform and experience these cyclic flexural strains due to thermal effects, they also carry axial loads transferred from the superstructure through the abutments. Review of the literature revealed that there is no specific study on the combined effects of axial load and thermal-induced/flexural strain cycles with various amplitudes on the low cycle fatigue (LCF) performance of jointless bridge SHPs. For this purpose, parametric experimental studies on full scale SHP specimens are conducted to simulate the cyclic behavior of SHPs under thermal effects in jointless bridges by considering the effect of axial load combined with large and small flexural strain cycles with various amplitudes. It is observed that at large flexural strain amplitudes, local buckling of the pile due to the effect of axial load adversely affects the LCF life of SHPs at the abutments of jointless bridges. Furthermore, it is observed that the effect of small flexural strain cycles on the LCF life of uncompact SHPs depends on the amplitude of large flexural strains and the amplitude ratio of the small and large flexural strains.
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH

Suggestions

Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
Evolutionary structural optimization of steel gusset plates
Khalaf, A. A.; Saka, M. P. (Elsevier BV, 2007-01-01)
Evolutionary structural optimization is applied to determine the optimum shape of steel gusset plates subjected to axial forces. A number of different gusset plates used in various types of connections is considered for this purpose. The evolutionary structural optimization approach is employed to find the optimum shapes of a gusset plate used in these connections. The first example considers a gusset plate having two holes which are utilized in the connection of double angle carrying a tensile force. Withi...
Live Load Distribution Formulas for Single-Span Prestressed Concrete Integral Abutment Bridge Girders
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2009-11-01)
In this study, live load distribution formulas for the girders of single-span integral abutment bridges (IABs) are developed. For this purpose, two and three dimensional finite-element models (FEMs) of several IABs are built and analyzed. In the analyses, the effects of various superstructure properties such as span length, number of design lanes, prestressed concrete girder size, and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional FEMs are then u...
Analytical formulation of maximum length limits of integral bridges on cohesive soils
Dicleli, Murat (Canadian Science Publishing, 2005-08-01)
This paper presents an analytical approach for predicting the length limits of integral bridges built on cohesive soils based on the flexural strength of the abutments and the low cycle fatigue performance of the steel H-piles at the abutments under cyclic thermal loading. First, H-piles that can accommodate large inelastic deformations are determined considering their local buckling instability. Then, a damage model is used to determine the maximum cyclic deformations that such piles can sustain. Next, non...
Citation Formats
M. Karalar and M. Dicleli, “Fatigue in jointless bridge H-piles under axial load and thermal movements,” JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, pp. 504–522, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47435.