Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Evolutionary structural optimization of steel gusset plates
Date
2007-01-01
Author
Khalaf, A. A.
Saka, M. P.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
Evolutionary structural optimization is applied to determine the optimum shape of steel gusset plates subjected to axial forces. A number of different gusset plates used in various types of connections is considered for this purpose. The evolutionary structural optimization approach is employed to find the optimum shapes of a gusset plate used in these connections. The first example considers a gusset plate having two holes which are utilized in the connection of double angle carrying a tensile force. Within this example the effect of certain parameters in the evolutionary structural optimization process such as material removal ratio, mesh size and modeling of holes on the final shape is investigated. The gusset plates having three, four and five holes are also designed for optimal shape. Furthermore design examples include two rows of multiple holes as well as staggered holes and connections with multiple members. The final shapes obtained in the single member bolted connections are generally similar to those used in practice. However, they are lighter. Those shapes obtained for the multiple member connections and welded double angle connections are unpredictable. Although the shapes obtained in all the examples are lighter than the ones used in practice, they might be more expensive to produce. It is shown that the evolutionary structural optimization method has a potential in determining the optimum shape of gusset plates.
Subject Keywords
Mechanics of Materials
,
Civil and Structural Engineering
,
Metals and Alloys
,
Building and Construction
URI
https://hdl.handle.net/11511/64958
Journal
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
DOI
https://doi.org/10.1016/j.jcsr.2006.03.002
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
Seismic performance of chevron braced steel frames with and without viscous fluid dampers as a function of ground motion and damper characteristics
Dicleli, Murat (Elsevier BV, 2007-08-01)
This study is aimed at comparing the seismic performance of steel chevron braced frames (CBFs) with and without viscous fluid dampers (VFDs) as a function of the intensity and frequency characteristics of the ground motion and VFD parameters. For this purpose, comparative nonlinear time history (NLTH) analyses of single and multiple story CBFs with and without VFDs are conducted using ground motions with various frequency characteristics scaled to represent small, moderate and large intensity earthquakes. A...
Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
Fatigue in jointless bridge H-piles under axial load and thermal movements
Karalar, Memduh; Dicleli, Murat (Elsevier BV, 2018-08-01)
The seasonal and short-term temperature variations produce cyclic horizontal displacements in the continuous superstructure of jointless bridges and hence in the abutment piles. Thorough study of the available field measurement data for jointless bridges showed that the thermal-induced cyclic flexural strains in steel H-piles (SHPs) at the abutments are composed of large, primary small and secondary small flexural strain cycles. While the SHPs at the abutments of jointless bridges laterally deform and exper...
Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. A. Khalaf and M. P. Saka, “Evolutionary structural optimization of steel gusset plates,”
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH
, pp. 71–81, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64958.