A Modular Real-Time Fieldbus Architecture for Mobile Robotic Platforms

Download
2011-03-01
Saranlı, Uluç
Oeztuerk, M. Cihan
The design and construction of complex and reconfigurable embedded systems such as small autonomous mobile robots is a challenging task that involves the selection, interfacing, and programming of a large number of sensors and actuators. Facilitating this tedious process requires modularity and extensibility both in hardware and software components. In this paper, we introduce the universal robot bus (URB), a real-time fieldbus architecture that facilitates rapid integration of heterogeneous sensor and actuator nodes to a central processing unit (CPU) while providing a software abstraction that eliminates complications arising from the lack of hardware homogeneity. Motivated by our primary application area of mobile robotics, URB is designed to be very lightweight and efficient, with real-time support for Recommended Standard (RS) 232 or universal serial bus connections to a central computer and inter-integrated circuit (I(2)C), controller area network, or RS485 bus connections to embedded nodes. It supports automatic synchronization of data acquisition across multiple nodes, provides high data bandwidth at low deterministic latencies, and includes flexible libraries for modular software development both for local nodes and the CPU. This paper describes the design of the URB architecture, provides a careful experimental characterization of its performance, and demonstrates its utility in the context of its deployment in a legged robot platform.
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Suggestions

A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope
Alper, Said Emre; Temiz, Yuksel; Akın, Tayfun (Institute of Electrical and Electronics Engineers (IEEE), 2008-12-01)
This paper presents the development of a compact single-axis angular rate sensor system employing a 100-mu m-thick single-crystal silicon microelectromechanical systems gyroscope with an improved decoupling arrangement between the drive and sense modes. The improved decoupling arrangement of the gyroscope enhances the robustness of sensing frame against drive-mode oscillations and therefore minimizes mechanical crosstalk between the drive and sense modes, yielding a small bias instability. The gyroscope cor...
A new wireless asynchronous data communications module for industrial applications
EGE, Yavuz; Sensoy, Mehmet Gokhan; Kalender, Osman; Nazlibilek, Sedat; Citak, Hakan (Elsevier BV, 2013-10-01)
All the sensors such as temperature, humidity, and pressure used in industry provide analog outputs as inputs for their control units. Wireless transmission of the data has advantages on wired transmission such as USB port, parallel port and serial port and therefore has great importance for industrial applications. In this work, a new wireless asynchronous data communications module has been developed to send the earth magnetic field data around a ferromagnetic material detected by a KMZ51 AMR sensor. The ...
A new likelihood approach to autonomous multiple model estimation
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper presents an autonomous multiple model (AMM) estimation algorithm for hybrid systems with sudden changes in their parameters. Estimates of Kalman filters (KFs) that are tuned and employed for different system modes are merged based on a newly defined likelihood function without any necessity for filter interaction. The proposed likelihood function is composed of two measures, the filter agility measure and the steady-state error measure. These measures are derived based on filter adaptation rules....
Enhancement of the reliability of MEMS shock sensors by adopting a dual-mass model
Fathalilou, Mohammad; Soltani, Kamran; Rezazadeh, Ghader; Ciğeroğlu, Ender (Elsevier BV, 2020-03-01)
MEMS shock sensors are widely used with applications ranging from aircraft to electrical measurement systems. They are designed to operate at the shocks above a predefined threshold level. The conventional single-mass switches may lose their reliability at shock levels smaller than the threshold, if experience smaller unwanted pulse duration. This paper has proposed a dual-mass switch with auxiliary mass-spring attached to the main system which increases the reliability of the sensor against the unwanted pu...
A hybrid single-source shortest path algorithm
Arslan, Hilal; Manguoğlu, Murat (The Scientific and Technological Research Council of Turkey, 2019-01-01)
The single-source shortest path problem arises in many applications, such as roads, social applications, and computer networks. Finding the shortest path is challenging, especially for graphs that contain a large number of vertices and edges. In this work, we propose a novel hybrid method that first sparsifies a given graph by removing most edges that cannot form the shortest path tree and then applies a classical shortest path algorithm to the sparser graph. Removing all the edges that cannot form the shor...
Citation Formats
U. Saranlı and M. C. Oeztuerk, “A Modular Real-Time Fieldbus Architecture for Mobile Robotic Platforms,” IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, pp. 916–927, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47463.