Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Automated Moving Object Classification in Wireless Multimedia Sensor Networks
Date
2017-02-15
Author
Civelek, Muhsin
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
The use of wireless multimedia sensor networks (WMSNs) for surveillance applications has attracted the interest of many researchers. As with traditional sensor networks, it is easy to deploy and operate WMSNs. With inclusion of multimedia devices in wireless sensor networks, it is possible to provide data to users that is more meaningful than that provided by scalar sensor-based systems alone; however, producing, storing, processing, analyzing, and transmitting multimedia data in sensor networks requires consideration of additional constraints, including energy, processing power, storage capacity, and communication. Furthermore, as multimedia sensors produce much more data than scalar sensors, more manpower is required to analyze multimedia data. To overcome these constraints and challenges, this paper aimed to propose a system architecture and a set of procedures for WMSNs that facilitate automatic classification of moving objects using scalar and multimedia sensors. Methods and standards for detecting and classifying a moving object, as well as transmission of the results, are described in detail. The hardware for each sensor node includes a built-in camera, a passive infrared motion sensor, a vibration sensor, and an acoustic sensor. An application using our proposed methods was developed and embedded in the multimedia sensor node. In addition, a sink station was set up and the data produced by the sensor network was collected by this server. The classification performance of the application was tested using video recorded by the sensor node. The effect of the proposed methods on power consumption was also tested and measured. The experimental results show that the proposed approach is sufficiently lightweight to be used for real-world surveillance applications.
Subject Keywords
Wireless multimedia sensor
,
Wireless communication
,
Object detection
,
Feature extraction
,
Classification
URI
https://hdl.handle.net/11511/47574
Journal
IEEE SENSORS JOURNAL
DOI
https://doi.org/10.1109/jsen.2016.2638853
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
A Lightweight wireless multimedia sensor network architecture with object detection and classification capabilities
Civelek, Muhsin; Yazıcı, Adnan; Department of Computer Engineering (2017)
Use of wireless multimedia sensor networks (WMSNs) for surveillance applications has attracted the interest of many researchers. As with traditional sensor networks, it is easy to deploy and operate WMSNs. With inclusion of multimedia devices in wireless sensor networks (WSNs), it is possible to provide data to users that is more meaningful than that provided by scalar sensor-based systems alone; however, producing, storing, processing, analyzing, and transmitting multimedia data in sensor networks requires...
A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
Hasan, Mohammed Zaki; Al-Rizzo, Hussain; Al-Turjman, Fadi (2017-01-01)
The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time m...
Fuzzy Semantic Web Architecture for Activity Detection in Wireless Multimedia Sensor Network Applications
Ozdin, Ali Nail; Yazıcı, Adnan; KOYUNCU, Murat (2019-01-01)
This study aims to increase the reliability of activity detection in Wireless Multimedia Sensor Networks (WMSNs) by using Semantic Web technologies extended with fuzzy logic. The proposed approach consists of three layers: the sensor layer, the data layer, and the Semantic Web layer. The sensor layer comprises a WMSN comprising sensor nodes with multimedia and scalar sensors. The data layer retrieves and stores data from the sink of WMSN. At the top of the architecture, there is a semantic web layer that in...
An Energy - efficient and reactive remote surveillance framework using wireless multimedia sensor networks
Öztarak, Hakan; Yazıcı, Adnan; Department of Computer Engineering (2011)
With the introduction of Wireless Multimedia Sensor Networks, large-scale remote outdoor surveillance applications where the majority of the cameras will be battery-operated are envisioned. These are the applications where the frequency of incidents is too low to employ permanent staffing such as monitoring of land and marine border, critical infrastructures, bridges, water supplies, etc. Given the inexpensive costs of wireless resource constrained camera sensors, the size of these networks will be signific...
Identification and localization on a wireless magnetic sensor network
Baghaee, Sajjad; Uysal Bıyıkoğlu, Elif; Gürbüz, Sevgi Zübeyde; Department of Electrical and Electronics Engineering (2012)
This study focused on using magnetic sensors for localization and identification of targets with a wireless sensor network (WSN). A wireless sensor network with MICAz motes was set up utilizing a centralized tree-based system. The MTS310, which is equipped with a 2-axis magnetic sensor was used as the sensor board on MICAz motes. The use of magnetic sensors in wireless sensor networks is a topic that has gained limited attention in comparison to that of other sensors. Research has generally focused on the d...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Civelek and A. Yazıcı, “Automated Moving Object Classification in Wireless Multimedia Sensor Networks,”
IEEE SENSORS JOURNAL
, pp. 1116–1131, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47574.