Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering

2020-07-01
Fathi-Achachelouei, Milad
Keskin, Dilek
Bat, Erhan
Vrana, Nihal E.
Tezcaner, Ayşen
Degeneration of articular cartilage due to damages, diseases, or age-related factors can significantly decrease the mobility of the patients. Various tissue engineering approaches which take advantage of stem cells and growth factors in a three-dimensional constructs have been used for reconstructing articular tissue. Proliferative impact of basic fibroblast growth factor (bFGF) and chondrogenic differentiation effect of transforming growth factor-beta 1 (TGF-beta 1) over mesenchymal stem cells have previously been verified. In this study, silk fibroin (SF) and of poly(ethylene glycol) dimethacrylate (PEGDMA) were used to provide a versatile platform for preparing hydrogels with tunable mechanical, swelling and degradation properties through physical and chemical crosslinking as a microenvironment for chondrogenic differentiation in the presence of bFGF and TGF-beta 1 releasing nanoparticles (NPs) for the first time. Scaffolds with compressive moduli ranging from 95.70 +/- 17.82 to 338.05 +/- 38.24 kPa were obtained by changing both concentration PEGDMA and volume ratio of PEGDMA with 8% SF. Highest cell viability was observed in PEGDMA 10%-SF 8% (1:1) [PEG10-SF8(1:1)] hydrogel group. Release of bFGF and TGF-beta 1 within PEG10-SF8(1:1) hydrogels resulted in higher DNA and glycosaminoglycans amounts indicating synergistic effect of dual release over proliferation and chondrogenic differentiation of dental pulp stem cells in hydrogels, respectively. Our results suggested that simultaneous delivery of bFGF and TGF-beta 1 through utilization of PLGA NPs within PEG10-SF8(1:1) hydrogel provided a novel and versatile means for articular cartilage regeneration as they allow for dosage- and site-specific multiple growth factor delivery.
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS

Suggestions

Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration
Pazarçeviren, Ahmet Engin; Evis, Zafer; Keskin, Dilek; Tezcaner, Ayşen (IOP Publishing, 2019-05-01)
Guided bone regeneration (GBR) is a therapeutic modality applied prior to dental implant placement to increase bone density at the defect site or during placement for directing bone growth around implant. In this study, an asymmetric, bilayer structure was prepared by covalently bonding a dense polycaprolactone-polyethylene glycol-polycaprolactone (PCEC) membrane layer with a hydrogel layer composed of bismuth doped bioactive glass (BG, 45S5) and graphene oxide (GO) particles incorporated in gelatin. Struct...
Effects of different sterilization techniques and varying anodized TiO2 nanotube dimensions on bacteria growth
Kummer, Kim M.; Taylor, Erik N.; Durmas, Naside G.; Tarquinio, Keiko M.; Ercan, Batur; Webster, Thomas J. (Wiley, 2013-07-01)
Infection of titanium (Ti)-based orthopedic implants is a growing problem due to the ability of bacteria to develop a resistance to today's antibiotics. As an attempt to develop a new strategy to combat bacteria functions, Ti was anodized in the present study to possess different diameters of nanotubes. It is reported here for the first time that Ti anodized to possess 20 nm tubes then followed by heat treatment to remove fluorine deposited from the HF anodization electrolyte solution significantly reduced ...
Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization
Kayabolen, Alisan; Keskin, Dilek; Aykan, Andac; Karslioglu, Yildirim; Zor, Fatih; Tezcaner, Ayşen (IOP Publishing, 2017-06-23)
Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, vascularization is needed since nutrients and oxygen cannot reach cells in thick implants by diffusion. Obtaining a biocompatible scaffold with good mechanical properties is another problem. In this study, we aimed to develop thick and vascularized adipose tissue constructs supporting cell viability and adipose tissue regeneration. Hydrogels were prepared by mixing rat decellularized adipose tissue (DAT) and si...
Interdependence of pulsed ultrasound and shear stress effects on cell morphology and gene expression
Mccormick, Susan M.; Saini, Vikas; Yazıcıoğlu, Yiğit; Demou, Zoe N.; Royston, Thomas J. (Springer Science and Business Media LLC, 2006-03-01)
Fluid shear stress is a key biomechanical regulatory factor in a several biological systems including bone tissue. Bone cells are also regulated by exogenous acoustic vibration, which has therapeutic benefits. In this study, we determined the effects of shear stress and pulsed ultrasound (US), alone and in series on osteoblast morphology and gene expression. We observed that shear stress (19 dyne/cm(2)) elongated SaOS-2 cells at 3, 6, 24, and 48 h decreasing their shape index from control values of 0.51 +/-...
Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation
Pazarçeviren, Ahmet Engin; Altunbas, Korhan; Yaprakci, Volkan; Erdemli, Ozge; Keskin, Dilek; Tezcaner, Ayşen (Wiley, 2020-01-01)
In this study, clinoptilolite (CLN) was employed as a reinforcement in a polymer-based composite scaffold in bone tissue engineering and evaluated in vivo for the first time. Highly porous, mechanically stable, and osteogenic CLN/PCL-PEG-PCL (CLN/PCEC) scaffolds were fabricated with modified particulate leaching/compression molding technique with varying CLN contents. We hypothesized that CLN reinforcement in a composite scaffold will improve bone regeneration and promote repair. Therefore, the scaffolds we...
Citation Formats
M. Fathi-Achachelouei, D. Keskin, E. Bat, N. E. Vrana, and A. Tezcaner, “Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, pp. 2041–2062, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47656.