Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties
Date
2013-01-01
Author
Nalbant Esentürk, Emren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
Iron oxide-coated gold nanostars are produced by first synthesizing gold nanostars (ca 150 nm), then introducing a polyvinylpyrollidone coating followed by reducing iron(II) and iron(III) salts on the nanoparticle (NP) surface. Morphological and chemical composition characterizations of these composite nanomaterials were performed via field-emission transmission electron microscopy/energy dispersive spectroscopy studies. The analysis revealed that the majority of the NPs had coating of approximately 1-5 nm thicknesses. The crystal structure of the coating on gold nanostars was determined to be alpha-Fe2O3 with X-ray diffraction analysis. X-ray photoelectron spectroscopy confirmed that the coating is Fe2O3. The magnetic property studies via superconducting quantum interference device magnetometer revealed an antiferromagnetic behavior of the magnetic coating, verifying the existence of antiferromagnetic alpha-Fe2O3 layer on gold nanostars. Surface-enhanced Raman scattering (SERS) spectroscopy performed with crystal violet as the probe molecule confirms continued strong SERS activity for gold nanostars after the iron oxide coating. Having both magnetic and plasmonic properties in one NP system makes these particles suitable for various bio-analytical applications such as biomolecule separation, sensing and magnetic imaging.
Subject Keywords
Gold nanoparticles
,
Magnetic nanoparticles
,
SERS; Raman
,
Nanostar
,
Raman
URI
https://hdl.handle.net/11511/47674
Journal
JOURNAL OF NANOPARTICLE RESEARCH
DOI
https://doi.org/10.1007/s11051-012-1364-9
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Gold nanoparticle modified conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrole-1-l) benzenamine for potential use as a biosensing material
Tuncagil, Sevinc; Ozdemir, Caglar; ODACI DEMİRKOL, DİLEK; TİMUR, SUNA; Toppare, Levent Kamil (2011-08-01)
Gold nanoparticle (AuNP) modified conducting polymer of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine (SNS-NH2) was used as the biosensing platform for glucose analysis. Electrochemical measurements were carried out by following the consumed oxygen due to the enzymatic reaction of glucose oxidase (GOx) at -0.7 V vs Ag/AgCl. Optimisation of pH, enzyme loading, stability experiments were carried out. Effect of NP was investigated by monitoring the signal responses at different AuNP sizes and amounts. A ...
Gold nanowires with high aspect ratio and morphological purity: Synthesis, characterization, and evaluation of parameters
Dertli, Elcin; Coskun, Sahin; Nalbant Esentürk, Emren (2013-01-01)
In this study, gold (Au) nanowires were synthesized with a modified hydrothermal process, and high structural purity and control over Au nanowire diameter were achieved. Parametric study was performed to examine the effect of surfactant concentration, reaction time, and temperature on the quality of the synthesized products. The optimum conditions were determined for the synthesis with two different surfactant molecules, namely hexamethylenetetramine and ethylenediaminetetraacetic acid. Au nanowires synthes...
Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities
Elcı, Aylin; Demırtas, Ozge; Öztürk, İbrahim Murat; Bek, Alpan; Nalbant Esentürk, Emren (2018-12-01)
Tin oxide-coated gold nanostar hybrid nanostructures are prepared by first synthesizing gold nanostars (ca. 400nm), then introducing Na2SnO3 precursor followed by its hydrolysis and formation of a tin oxide layer on nanoparticle surface. The synthesized hybrid structures have been characterized by combination of UV-Vis spectroscopy, transmission electron microscope (TEM), energy-dispersive X-ray studies, scanning electron microscope (SEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectr...
Power conversion efficiency enhancement of organic solar cells by addition of gold nanoparticles
Kozanoğlu, Duygu; Turan, Raşit; Akın, Tayfun; Department of Micro and Nanotechnology (2012)
In the first part of the study, power conversion efficiency enhancement of organic solar cells by addition of gold nanorods and gold nanostars into PEDOT: PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) layer was investigated. Efficiency of each sample set has been characterized by measuring current density-voltage characteristics. The best efficiencies obtained during this study are 2.88 % and 2.54 % by addition of gold nanostars and nanorods, respectively. The increase in PCEs is notable whe...
Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane
Akbayrak, Serdar; Özkar, Saim (2021-08-15)
In this work, platinum(0) nanoparticles are deposited on the surface of magnetic cobalt ferrite forming magnetically separable Pt-0/CoFe2O4 nanoparticles, which are efficient catalysts in H-2 generation from the hydrolysis of ammonia borane. Catalytic activity of Pt-0/CoFe2O4 nanoparticles decreases with the increasing platinum loading, parallel to the average particle size. Pt-0/CoFe2O4 (0.23% wt. Pt) nanoparticles have an average diameter of 2.30 +/- 0.47 nm and show an extraordinary turnover frequency of...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Nalbant Esentürk, “Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties,”
JOURNAL OF NANOPARTICLE RESEARCH
, pp. 0–0, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47674.