Power conversion efficiency enhancement of organic solar cells by addition of gold nanoparticles

Download
2012
Kozanoğlu, Duygu
In the first part of the study, power conversion efficiency enhancement of organic solar cells by addition of gold nanorods and gold nanostars into PEDOT: PSS (Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)) layer was investigated. Efficiency of each sample set has been characterized by measuring current density-voltage characteristics. The best efficiencies obtained during this study are 2.88 % and 2.54 % by addition of gold nanostars and nanorods, respectively. The increase in PCEs is notable when these values are compared with the ones (1.67 %) obtained with a reference device which is prepared without adding any gold nanoparticles under the same conditions. In the second part of the study, branched gold nanoparticles were succesfully grown directly on different types of surfaces such as glass, silicon wafer, and indium-tin-oxide (ITO) coated glass with a simple solution-based method in order to utilize them for further applications.

Suggestions

Photovoltaic Properties of Poly(Triphenylamine-Thiazolo[5,4-d] Thiazole) Copolymer Dye in Bulk-Hetorojunction Organic Solar Cells
Olgun, Ugursoy; Gulfen, Mustafa; HIZALAN, Gonul; Çırpan, Ali; Toppare, Levent Kamil (2017-04-01)
In this study, the photovoltaic properties of poly(triphenylamine-thiazolo[5,4-d]thiazole) alternating copolymer dye in bulk heterojunction polymer solar cells were examined. The copolymer is a red colored dye material with high thermal stability, good solubility and low-band gap energy. The band gap energy of the polymer was determined as 1.36 eV. The conductivity of the polymer thin film was measured as 1.5x10(-5) S/cm. The polymer solar cells were fabricated using the different ratios of the blends of th...
Photovoltaic performance of bifacial dye sensitized solar cell using chemically healed binary ionic liquid electrolyte solidified with SiO2 nanoparticles
Cosar, Burak; Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Özenbaş, Ahmet Macit (2013-01-01)
In this study, we investigated the effect of electrolyte composition, photoanode thickness, and the additions of GuSCN (guanidinium thiocyanate), NMB (N-methylbenimidazole), and SiO2 on the photovoltaic performance of DSSCs (dye sensitized solar cells). A bifacial DSSC is realized and irradiated from front and rear sides. The devices give maximum photovoltaic efficiencies for 70% PMII (1-propyl-3-methyl-imidazolium iodide)/30% (EMIB(CN)(4)) (1-ethyl-3-methyl-imidazolium tetracyanoborate) electrolyte composi...
Fabrication and investigation of extremely thin CdTe absorber layer solar cells
Hosseini, Arezoo; Erçelebi, Ayşe Çiğdem; Turan, Raşit; Department of Physics (2016)
Extremely thin absorber layer (ETA) solar cells aim to combine the advantages of using very thin and cheaply produced absorber layer on nano structured substrates with stability of all-solid-state solar cells. This type of photovoltaic devices use a nano structured interpenetrating heterojunction of thin light-absorbing layer at the interface between an n- and p-type semiconductors. N-type nano structured TiO2 layer is deposited on a Transparent Conducting Oxide coated glass (TCO) substrate, following with ...
Gold nanostar @ iron oxide core-shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties
Nalbant Esentürk, Emren (2013-01-01)
Iron oxide-coated gold nanostars are produced by first synthesizing gold nanostars (ca 150 nm), then introducing a polyvinylpyrollidone coating followed by reducing iron(II) and iron(III) salts on the nanoparticle (NP) surface. Morphological and chemical composition characterizations of these composite nanomaterials were performed via field-emission transmission electron microscopy/energy dispersive spectroscopy studies. The analysis revealed that the majority of the NPs had coating of approximately 1-5 nm ...
PASSIVATION OF SILICON SOLAR CELLS VIA LOW TEMPERATURE WET CHEMICAL OXIDATION
KÖKBUDAK, GAMZE; Çiftpınar, Emine Hande; DEMİRCİOĞLU, OLGU; Turan, Raşit (2016-12-01)
In the development of high efficiency crystalline Si solar cells, decreasing bulk and surface recombination velocities of the minority carriers is vital. As the bulk recombination could be suppressed by enhancing the material quality, the effect of surface recombination on cell performance becomes more dominant. Also, recent studies have revealed that the area under the metal contacted region needs to be passivated to minimize the carrier recombination. The passivation of front and back surface of the cell ...
Citation Formats
D. Kozanoğlu, “Power conversion efficiency enhancement of organic solar cells by addition of gold nanoparticles,” M.S. - Master of Science, Middle East Technical University, 2012.