Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole

Tarkuc, S.
Sahmetlioglu, E.
Tanyeli, Cihangir
Akhmedov, I. M.
Toppare, Levent Kamil
In this study, synthesis of a thiophene functionalized monomer, 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole (SNBS) was achieved. A new polythiophene derivative was synthesized by both chemical and electrochemical polymerization. The polymer synthesized via chemical oxidative method was soluble in organic solvents and characterized by nuclear magnetic resonance (H-1 and C-13 NMR) spectroscopy. The average molecular weight of the chemically synthesized polymer was determined by gel permeation chromatography (GPC) as Mn = 8.0 x 10(3) The electrochemical oxidative polymerization of SNBS was performed via potentiodynamic method using NaClO4/LiClO4 as the supporting electrolyte in acetonitrile (AN). Characterizations of the resulting polymer were performed by cyclic voltammetry (CV), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and UV-vis spectroscopy. Electrical conductivity of P(SNBS) was measured by the four-probe technique. Spectroelectrochemical analysis presents that the polymer has an electronic bandgap, of 1.9 eV, with a light gray color in the fully reduced form and a dark gray color in the fully oxidized form. The switching ability of P(SNBS) was monitored and the percent transmittance (%T) was found as 12%. Dual-type complementary colored electrochromic device (ECD) using P(SNBS)/poly(3,4-ethylenedioxythiophene) (PEDOT) in sandwich configuration were constructed. Spectroelectrochemistry, switching ability and optical memory of the electrochromic devices were investigated.


Enhancing electrochemical and electrochromic performances of carbazole comprising monomer via copolymerization with 3,4-ethylenedioxythiophene (EDOT)
Kalay, Isil; Yigit, Deniz; GÜLLÜ, Mustafa; DEPCİ, TOLGA; Toppare, Levent Kamil; Hacioglu, Serife O. (Elsevier BV, 2020-09-01)
In this study, two novel electrochromic copolymers (CoP1.3 and CoP1.5) were synthesized via electrochemical methods and characterized. The comonomers used in the synthesis were 3,4-ethylenedioxythiophene (EDOT) and a carbazole comprising monomer; 9-(2-(4-(Phenyldiazenyl) phenoxy) ethyl)-3,6-di(thiophen-2-yl)-9H-carbazole (M1). Carbazole containing monomer (M1) and EDOT were combined with two different comonomer feed ratios, 1: 3 and 1: 5 respectively in order to investigate the effect of increasing EDOT amo...
STANKE, D; HALLENSLEBEN, ML; Toppare, Levent Kamil (Elsevier BV, 1993-03-22)
Methyl methacrylate (MMA) and 2-bromoethyl methacrylate (BEMA) were copolymerized and the reactivity ratios of the monomers were determined. A pyrrole moiety was introduced into the copolymer via polymer analogous reaction and grafting between this molecule and pyrrole was achieved by chemical oxidative polymerization of pyrrole with iron-(III) chloride. Conductivities of 10(-2) S/cm were measured.
Electrochemical polymerization of 9-fluorenecarboxylic acid and its electrochromic device application
Bezgin, Buket; CİHANER, ATİLLA; Önal, Ahmet Muhtar (Elsevier BV, 2008-09-01)
Poly(9-fluorenecarboxylic acid) (PFCA) was synthesized by electrochemical oxidation of 9-fluorenecarboxylic acid (FCA) using a mixture of nitromethane and boron trifluoride diethyl etherate as the solvent and tetrabutylammonium tetrafluoroborate as the supporting electrolyte. An insoluble and conducting brownish-orange film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 1.15 V. Characterization of the polymer film has been carried out using Four...
Conducting polymers with benzothiadiazole and benzoselenadiazole units for biosensor applications
Emre, Fatma Bilge; Ekiz, Fulya; Balan, Abidin; Emre, Sinan; TİMUR, SUNA; Toppare, Levent Kamil (Elsevier BV, 2011-11-15)
Poly(4,7-di(2,3)-dihydrothienol[3,4-b][1,4]dioxin-5-yl-benzo[1,2,5]thiadiazole) (PBDT) and poly(4,7-di(2,3)-dihydrothienol[3,4-b][1,4]dioxin-5-yl-2,1,3-benzoselenadiazole) (PESeE) were electrochemically deposited on graphite electrodes and used as immobilization matrices for biosensing studies. After electrochemical deposition of the polymeric matrices, glucose oxidase (GOx) was immobilized on the modified electrodes as the model enzyme. In the biosensing studies, the decrease in oxygen level as a result of...
Electrochemical preparation and characterization of carbon fiber reinforced poly (dimethyl siloxane)/polythiophene composites: electrical, thermal and mechanical properties
Sankir, M; Kucukyavuz, S; Kucukyavuz, Z (Elsevier BV, 2002-05-10)
A series of polydimethylsiloxane (PDMS)/polythiophene (Pth)/carbon fiber (CF) composites was synthesized by electrochemical polymerization using tetrabutylammoniumtetrafluoroborate (TBAFB) as supporting electrolyte and acetonitrile as solvent. Composites were characterized by TGA, SEM, and mechanical tests and conductivity measurements. Conductivities of composites were in the range of 25 S/cm. SEM studies show that CF were coated by PDMS/Pth matrix and well oriented in the matrix. In mechanical tests it ha...
Citation Formats
S. Tarkuc, E. Sahmetlioglu, C. Tanyeli, I. M. Akhmedov, and L. K. Toppare, “Electrochromic properties of a soluble conducting polymer of 1-benzyl-2,5-di(thiophene-2-yl)-1H-pyrrole,” SENSORS AND ACTUATORS B-CHEMICAL, pp. 622–628, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/47923.