um-Topology in multi-normed vector lattices

Download
2018-04-01
Dabboorasad, Y. A.
Emelyanov, Eduard
Marabeh, M. A. A.
Let be a separating family of lattice seminorms on a vector lattice X, then is called a multi-normed vector lattice (or MNVL). We write if for all . A net in an MNVL is said to be unbounded m-convergent (or um-convergent) to x if for all . um-Convergence generalizes un-convergence (Deng et al. in Positivity 21:963-974, 2017; KandiAc et al. in J Math Anal Appl 451:259-279, 2017) and uaw-convergence (Zabeti in Positivity, 2017. doi:10.1007/s11117-017-0524-7), and specializes up-convergence (AydA +/- n et al. in Unbounded p-convergence in lattice-normed vector lattices. arXiv:1609.05301) and -convergence (Dabboorasad et al. in -Convergence in locally solid vector lattices. arXiv:1706.02006v3). um-Convergence is always topological, whose corresponding topology is called unbounded m-topology (or um-topology). We show that, for an m-complete metrizable MNVL , the um-topology is metrizable iff X has a countable topological orthogonal system. In terms of um-completeness, we present a characterization of MNVLs possessing both Lebesgue's and Levi's properties. Then, we characterize MNVLs possessing simultaneously the -Lebesgue and -Levi properties in terms of sequential um-completeness. Finally, we prove that every m-bounded and um-closed set is um-compact iff the space is atomic and has Lebesgue's and Levi's properties.

Suggestions

uτ-Convergence in locally solid vector lattices
Dabboorasad, Yousef A M; Emel’yanov, Eduard; Department of Mathematics (2018)
We say that a net (xα) in a locally solid vector lattice (X,τ) is uτ-convergent to a vector x ∈ X if
Nonstandard hulls of lattice-normed ordered vector spaces
Aydin, Abdullah; Gorokhova, Svetlana; Gul, Hasan (2018-01-01)
Nonstandard hulls of a vector lattice were introduced and studied in many papers. Recently, these notions were extended to ordered vector spaces. In the present paper, following the construction of associated Banach-Kantorovich space due to Emelyanov, we describe and investigate the nonstandard hull of a lattice-normed space, which is the foregoing generalization of Luxemburg's nonstandard hull of a normed space.
Model-theory of vector-spaces over unspecified fields
Pierce, David (2009-06-01)
Vector spaces over unspecified fields can be axiomatized as one-sorted structures, namely, abelian groups with the relation of parallelism. Parallelism is binary linear dependence. When equipped with the n-ary relation of linear dependence for some positive integer n, a vector-space is existentially closed if and only if it is n-dimensional over an algebraically closed field. In the signature with an n-ary predicate for linear dependence for each positive integer n, the theory of infinite-dimensional vector...
Galois structure of modular forms of even weight
Gurel, E. (Elsevier BV, 2009-10-01)
We calculate the equivariant Euler characteristics of powers of the canonical sheaf on certain modular curves over Z which have a tame action of a finite abelian group. As a consequence, we obtain information on the Galois module structure of modular forms of even weight having Fourier coefficients in certain ideals of rings of cyclotomic algebraic integers. (c) 2009 Elsevier Inc. All rights reserved.
Equivariant cross sections of complex Stiefel manifolds
Onder, T (Elsevier BV, 2001-01-16)
Let G be a finite group and let M be a unitary representation space of G. A solution to the existence problem of G-equivariant cross sections of the complex Stiefel manifold W-k(M) of unitary k-frames over the unit sphere S(M) is given under mild restrictions on G and on fixed point sets. In the case G is an even ordered group, some sufficient conditions for the existence of G-equivariant real frame fields on spheres with complementary G-equivariant complex structures are also obtained, improving earlier re...
Citation Formats
Y. A. Dabboorasad, E. Emelyanov, and M. A. A. Marabeh, “um-Topology in multi-normed vector lattices,” POSITIVITY, pp. 653–667, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48027.